FEB 24, 2017 8:18 AM PST

Gut microbes talk to the immune system

WRITTEN BY: Kerry Evans

Researchers from Harvard Medical School have reported on the results of a large-scale search for immunomodulatory organisms. Specifically, they analyzed how gut bacteria affect immune cells and gene expression.

 

Gut microbes alter immune cells and gene expression. - Mirror Daily

 

These findings will help researchers design individualized treatments for different diseases based on how the gut microbiome interacts with the immune system. According to study author Dennis Kasper, “we set out to map out interactions between bacteria and the immune system in the hope that this could eventually lead to the development of an apothecary of agents tailored to modulate the immune system selectively and precisely.”

 

The group collected 53 of the most common human gut bacteria and transferred them individually to germ-free mice; these 53 species represented the five dominant phyla of gut bacteria: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Once the mouse guts were colonized with one of the species, they analyzed how each bacterial species affected immune cells and gene expression.

 

Over one-third of the bacterial species they tested increased the number of plasmacytoid dendritic cells in the colon - by at least two-fold. Plasmacytoid dendritic cells are innate immune cells that help detect pathogens. In contrast, some species - Staphylococcus saprophyticus and Lactobacillus rhamnosus - decreased the number of these immune cells (actually, these mice had virtually no plasmacytoid dendritic cells).

 

With respect to T cells, Fusobacterium varium decreased the number of CD4+ and CD8+ αβT cells.

 

Not only did various species of bacteria alter the populations of certain immune cells, they also altered gene expression. They found that Bacteroides dorei and B. longum both induced innate lymphoid cells in the gut to produce IL-22, a cytokine that helps initiate the innate immune response against bacterial pathogens. However, some bacteria - Acinetobacter lwoffii, Clostridium sordellii, and Veillonella - prevented the production of IL-22.

 

Lastly, certain bacteria altered the production of antimicrobial peptides in the gut. F. varium downregulated the expression of the Reg3 genes. On the other hand, Parabacteroides merdae and Porphyromonas uenonis induced the production of α-defensin, but decreased the expression of Reg3.

 

According to Kasper, “we believe that some microbes may upregulate certain genes to create a more hospitable environment for themselves, while others may downregulate certain ones to create a more hostile one for harmful bacteria.”

 

Sources: Cell, Science Daily, Wikipedia

 

 

 
About the Author
Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 14, 2022
Immunology
After Transplant, Another Person is Cured of HIV
AUG 14, 2022
After Transplant, Another Person is Cured of HIV
For the second time this year and only the fourth time ever, researchers have announced that a person has been cured of ...
AUG 19, 2022
Microbiology
Rapid Genetic Mutation in a Relative of a Crop-Killing Bacterium
AUG 19, 2022
Rapid Genetic Mutation in a Relative of a Crop-Killing Bacterium
Citrus greening, known by several other names including yellow dragon disease, Huanglongbing, or Candidatus Liberibacter ...
AUG 28, 2022
Genetics & Genomics
People Who Look Similar Have Similar DNA
AUG 28, 2022
People Who Look Similar Have Similar DNA
Almost 8 billion people live in the world today, so there are bound to be strangers who look just like each other. While ...
SEP 11, 2022
Microbiology
Using Yeast Cells to Make a Cancer Treatment
SEP 11, 2022
Using Yeast Cells to Make a Cancer Treatment
Vinblastine and vincristine are both common chemotherapies that are used to treat several types of cancer. The drugs sto ...
SEP 12, 2022
Cell & Molecular Biology
Live, 3D Images are Captured as a Virus Infects a Cell
SEP 12, 2022
Live, 3D Images are Captured as a Virus Infects a Cell
Scientists have caught a virus in the act of infecting a cell, and captured images of the action in real-time and three ...
SEP 23, 2022
Microbiology
Heme-Loving Plant Peptide Could Have Many Applications
SEP 23, 2022
Heme-Loving Plant Peptide Could Have Many Applications
Symbiotic relationships enable organisms to use one another, usually to the advantage of both. Legumes can live in symbi ...
Loading Comments...