APR 14, 2017 02:56 PM PDT

New insights into gonorrhea

WRITTEN BY: Kerry Evans

Researchers at the University of Maryland figured out why some Neisseria gonorrhoeae infections become invasive, while others don’t. More invasive strains cause the epithelial layer of the endocervix (in the female genital tract) to shed, giving the bacteria access to deeper tissues.

N. gonorrhoeae, as the name suggests, is the bacterium that causes gonorrhea. Gonorrhea is a common sexually transmitted infection, and it is becoming a serious public health issue because many strains of the bacterium are resistant to antibiotics.

Electron micrograph of N. gonorrhoeae

Gonorrhea has been difficult to study because the bacteria only infect humans - this means that other animal models aren’t particularly useful (and no humans are volunteering as guinea pigs). Here, the University of Maryland researchers, led by Liang-Chun Wang, developed an explant culture model that uses human endocervical tissue.

The group found that the bacteria cause epithelial cells lining the endocervix to shed off. The bacteria also disrupt the junctions between epithelial cells by activating myosin. This is a pretty surprising finding because researchers have always thought that this “epithelial exfoliation” helped to prevent infection.

They started their experiments by testing out their new explant model and comparing it to a monolayer of T84 colonic epithelium cells. They incubated the two cell cultures with bacteria, and by 24 hours both cultures showed bacteria-induced exfoliation. Importantly, both the endocervical explants and the T84 cells behaved similarly, indicating that both models could be useful for studying gonorrhea.

Next, the researchers investigated the N. gonorrhoeae cell-surface protein called Opa because previous studies indicated that it is especially important for the pathogenesis of gonorrhea. Opa is also important because it undergoes phase variation - the bacteria only express it under certain environmental conditions.

They incubated the endocervical and T84 cells with a mutant strain of bacteria that did not produce Opa. Surprisingly, cells that lacked Opa showed more exfoliation in response to the bacteria. The percentage of exfoliation increased in the endocervical cells from 32.3% to 66.3% and in the T84 cells from 31.2% to 55.8%. Thus, it appears that cells that do not express Opa are able to establish a more productive infection (from the bacterial point of view, of course).

Their next goal was to better understand the mechanism behind the bacteria-induced epithelial exfoliation. They suspected that non-muscle myosin II was involved in the process and tested whether small chemical inhibitors of myosin affected bacteria-induced exfoliation. Sure enough, two of the inhibitors (one that inhibited calcium-dependent and another that inhibited ROCK-dependent myosin activation) reduced exfoliation.

Thus, N. gonorrhoeae activates myosin in host cells to induce exfoliation. This, along with the absence of Opa, allows the bacteria to produce a more invasive infection.

Sources: PLOS Pathogens, Science Daily

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 23, 2018
Microbiology
OCT 23, 2018
DNA Pumps up Bacterial Cells
Cells are the basic building blocks of life, and have been well-studied since they were discovered in 1655....
NOV 19, 2018
Microbiology
NOV 19, 2018
The Gut Microbiome Changes Dramatically When Hunter-gatherers Start Farming
Researchers have shown that lifestyle changes have a rapid and significant influence on the human gut microbiome....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Behavior Predicting Neural Code Identified
Perceptual choice behavior, taking action based on the information received from the senses is often described by mathematical models...
DEC 03, 2018
Microbiology
DEC 03, 2018
Finding Emerging Viruses
Scientists have developed a tool that enables them to predict what viruses be transmissible between infected people....
DEC 05, 2018
Microbiology
DEC 05, 2018
Human Gut Bacteria Found to Carry Over 6000 Antibiotic Resistance Genes
The human body is home to vast numbers of microbes, and many of them harbor interesting genes....
DEC 16, 2018
Videos
DEC 16, 2018
Maternal High-Fat Diet Raises Inflammation Risk in Offspring
The diet of an average American consists of over 35 percent fat - more than what is recommended by the USDA....
Loading Comments...