JUN 05, 2017 8:33 AM PDT

Shigella gets creative to survive the GI tract

WRITTEN BY: Kerry Evans

It’s a long, dangerous trip from the mouth to the colon. New research from Massachusetts General Hospital explain how Shigella makes the journey.

 

Shigella sickens some 80 million people worldwide each year, and about 700,000 die. Shigella can leave the survivors with many issues, including arthritis and kidney damage.

 

Shigella infects cells in the colon.

 

Bacteria that make it to the small intestine are exposed to bile - a digestive juice made up of proteins, carbohydrates lipids, mineral salts, and vitamins. Bile kills most bacteria - except Shigella (and E. coli, Salmonella, and Vibrio).

 

According to study author Christina S. Faherty, “we analyzed how the pathogen's gene expression changes in response to bile salts exposure. The changes we identified pointed to the use of antibiotic resistance mechanisms to resist bile, to the development of a more infectious organism through increased virulence gene expression, and to one better able to survive the colonic environment due to additional gene expression changes.”

 

The researchers found that exposure to bile salts causes Shigella to form biofilms. The cells formed visible aggregates in culture and produced extracellular polymeric substances (EPS, detected with concanavalin A staining). The production of EPS required not only bile salts, but also glucose, and removing the bile salts caused the biofilms to disperse.

 

Next, they investigated whether there were changes in gene expression when Shigella was exposed to bile salts. Ninety-six genes were differentially expressed when the bacteria were cultured in the presence of bile salts. For example, exposure to bile salts induced the expression of genes for central metabolism, sugar transport, drug resistance, and virulence.

 

To verify these results, the researchers grew acrB or galU mutants with bile salts. AcrB is a component of the AcrAB multidrug efflux pump, and GalU is required to produce O-antigen, a component of lipopolysaccharide. As expected, neither mutant was able to grow in the presence of bile salts.

 

The researchers hypothesize that when Shigella encounters bile in the upper small intestine, the cells form a biofilm. However, when the bile is reabsorbed in the lower small intestine, the biofilm is dispersed, allowing the bacteria to invade the colon and establish an infection.

 

Sources: Infection and Immunity, Science Daily

 

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 12, 2020
Microbiology
APR 12, 2020
Are Ventilators Making Some COVID-19 Patients Worse?
COVID-19 is primarily a respiratory illness, and ventilators have been critical for treating COVID-19.
APR 23, 2020
Clinical & Molecular DX
APR 23, 2020
FDA Approves At-Home Sample Collection Diagnostic Test for COVID-19
The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). M ...
MAY 17, 2020
Microbiology
MAY 17, 2020
More Research Links ALS to the Microbiome
The community of microorganisms that lives in the gastrointestinal tract has a powerful influence on human health.
JUN 11, 2020
Cell & Molecular Biology
JUN 11, 2020
Changes in Gut Mucus are Connected to Brain Disorders
In recent years, researchers have learned more about how important the gut is to human health. Trillions of microbes liv ...
JUN 25, 2020
Cell & Molecular Biology
JUN 25, 2020
Peptide Made by Marine Worms Can Destroy Multidrug-Resistant Bacteria
Drug-resistant bacteria pose a serious threat to public health, and scientists have been searching for new antibiotics t ...
JUN 29, 2020
Microbiology
JUN 29, 2020
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
Vaccines that contain live attenuated viruses may be giving people some protection from serious cases of COVID-19 that i ...
Loading Comments...