JUN 05, 2017 8:33 AM PDT

Shigella gets creative to survive the GI tract

WRITTEN BY: Kerry Evans

It’s a long, dangerous trip from the mouth to the colon. New research from Massachusetts General Hospital explain how Shigella makes the journey.

 

Shigella sickens some 80 million people worldwide each year, and about 700,000 die. Shigella can leave the survivors with many issues, including arthritis and kidney damage.

 

Shigella infects cells in the colon.

 

Bacteria that make it to the small intestine are exposed to bile - a digestive juice made up of proteins, carbohydrates lipids, mineral salts, and vitamins. Bile kills most bacteria - except Shigella (and E. coli, Salmonella, and Vibrio).

 

According to study author Christina S. Faherty, “we analyzed how the pathogen's gene expression changes in response to bile salts exposure. The changes we identified pointed to the use of antibiotic resistance mechanisms to resist bile, to the development of a more infectious organism through increased virulence gene expression, and to one better able to survive the colonic environment due to additional gene expression changes.”

 

The researchers found that exposure to bile salts causes Shigella to form biofilms. The cells formed visible aggregates in culture and produced extracellular polymeric substances (EPS, detected with concanavalin A staining). The production of EPS required not only bile salts, but also glucose, and removing the bile salts caused the biofilms to disperse.

 

Next, they investigated whether there were changes in gene expression when Shigella was exposed to bile salts. Ninety-six genes were differentially expressed when the bacteria were cultured in the presence of bile salts. For example, exposure to bile salts induced the expression of genes for central metabolism, sugar transport, drug resistance, and virulence.

 

To verify these results, the researchers grew acrB or galU mutants with bile salts. AcrB is a component of the AcrAB multidrug efflux pump, and GalU is required to produce O-antigen, a component of lipopolysaccharide. As expected, neither mutant was able to grow in the presence of bile salts.

 

The researchers hypothesize that when Shigella encounters bile in the upper small intestine, the cells form a biofilm. However, when the bile is reabsorbed in the lower small intestine, the biofilm is dispersed, allowing the bacteria to invade the colon and establish an infection.

 

Sources: Infection and Immunity, Science Daily

 

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAR 18, 2021
Microbiology
How a Chronic Hepatitis B Infection Happens
MAR 18, 2021
How a Chronic Hepatitis B Infection Happens
Hepatitis B can cause a long-term and sometimes fatal disease. Princeton University researchers have learned more about ...
MAR 21, 2021
Microbiology
Potent Drug Rapidly Clears Drug-Resistant Gonorrhea in Mouse Model
MAR 21, 2021
Potent Drug Rapidly Clears Drug-Resistant Gonorrhea in Mouse Model
A mouse model has shown that it's possible to clear a multi-drug resistant gonorrhea with only one dose of antibioti ...
APR 06, 2021
Clinical & Molecular DX
Radioactive Antibody Illuminates Fungal Lung Infections
APR 06, 2021
Radioactive Antibody Illuminates Fungal Lung Infections
  An international team of scientists has pioneered a new procedure to diagnose lung disease caused by common mold. ...
APR 26, 2021
Microbiology
Ocean Bacteria Can Add Carbon to the Atmosphere
APR 26, 2021
Ocean Bacteria Can Add Carbon to the Atmosphere
Scientists are noting that rock-dissolving microbes in the ocean may be contributing to climate change and should be tak ...
MAY 03, 2021
Microbiology
A New Bacterial Defense System is Discovered
MAY 03, 2021
A New Bacterial Defense System is Discovered
Most DNA that we're familiar with is found in cells in a double-stranded form. So, many years ago, scientists were intri ...
MAY 17, 2021
Microbiology
Bacteria Can Time Their DNA Replications by the Circadian Clock
MAY 17, 2021
Bacteria Can Time Their DNA Replications by the Circadian Clock
The circadian rhythm is the body's clock, and it influences physiology at the cellular level; it can help animals, inclu ...
Loading Comments...