JUN 22, 2017 12:04 PM PDT

Fungi and bacteria team up in dental plaque

WRITTEN BY: Kerry Evans

Tooth decay doesn’t just affect adults, it also affects toddlers - a condition called early-childhood caries. Researchers at the University of Pennsylvania showed that the fungus Candida albicans, in addition to bacteria, is to blame.

 

According to study author Hyun Koo, “this disease affects 23 percent of children in the United States and even more worldwide. In addition to fluoride, we desperately need an agent that can target the disease-causing biofilms and in this case not only the bacterial component but also the Candida."

 

Early-childhood caries affects children worldwide.

Image: Baby Centre UK

 

Most cases of tooth decay are caused by the bacterium Streptococcus mutans, but in cases of childhood caries, these bacteria and the fungus C. albicans appear to work together. Previously, the researchers showed that the bacteria and fungi worked together to form a particularly tough biofilm. In their new study published in PLOS Pathogens, the group figured out how the bacteria and fungi interact.

 

S. mutans secretes an exoenzyme called GtfB that synthesizes alpha-glucans. These glucans are a major component of plaque biofilms. The researchers found that mannans (a type of polysaccharide) on the surface of C. albicans interact with GtfB, enhancing biofilm production and promoting interactions between the bacteria and fungi.

 

The researchers used atomic force microscopy to measure the strength of interactions between GtfB and C. albicans mannans. They found that GtfB and wild type C. albicans adhered very tightly, but C. albicans mutants that lacked mannans did not interact with GtfB as well.

 

Next, they investigated how important the C. albicans mannans were for forming a mixed-species biofilm (a biofilm containing S. mutans and C. albicans) in vivo. To do this, they used a rodent model where rats were fed a high-sugar diet and infected with S. mutans and C. albicans to induce plaque formation.

 

When the rats were exposed to wild type strains of the bacteria and fungi, a robust plaque-biofilm formed on their teeth. However, when the rats were exposed to wild type S. mutans and a C. albicans mutant that could not make mannans, much less plaque-biofilm formed.

 

They also wanted to verify that GtfB was required for the mixed-species biofilm. When they coinfected the rats with C. albicans and a strain of S. mutans that did not make GtfB, very little plaque-biofilm was formed.

 

According to Koo, “instead of just targeting bacteria to treat early childhood caries, we may also want to target the fungi. Our data provide hints that you might not need to use a broad spectrum antimicrobial and might be able to target the enzyme or cell wall of the fungi to disrupt the plaque biofilm formation."

 

Sources: Science Daily, PLOS Pathogens

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 05, 2021
Immunology
Monkey Gene Snares Viruses, Inspires Future Antivirals
OCT 05, 2021
Monkey Gene Snares Viruses, Inspires Future Antivirals
Many of the deadly viruses that affect humans—including Ebola and HIV—have animal origins. These infectious ...
OCT 18, 2021
Cancer
The History of Immunotherapy: Toxins, Targets & T Cells
OCT 18, 2021
The History of Immunotherapy: Toxins, Targets & T Cells
Cancer immunotherapy, a treatment that directly enhances a patient’s immune system, is typically perceived as a mo ...
OCT 27, 2021
Neuroscience
Frankenworld: Should We Be Afraid of Playing God or Failing To Love Our Monsters?
OCT 27, 2021
Frankenworld: Should We Be Afraid of Playing God or Failing To Love Our Monsters?
Lawyer Henry T. Greely analyzes the relevance of Mary Shelley's classic, "Frankenstein," in light of today's bioscience
NOV 21, 2021
Microbiology
Rare Genetic Variant Can Make People Susceptible to Bird Flu H7N9
NOV 21, 2021
Rare Genetic Variant Can Make People Susceptible to Bird Flu H7N9
Zoonosis is a serious health concern, as the COVID-19 pandemic has shown. Viruses that infect one species can acquire ge ...
NOV 25, 2021
Microbiology
How Microbes Use Copper to Make an Antibiotic
NOV 25, 2021
How Microbes Use Copper to Make an Antibiotic
Copper is known to have antibacterial properties, and though it's an important chemical for many organisms, it can b ...
DEC 03, 2021
Technology
New Laser Destroys Drug-Resistant Bacteria
DEC 03, 2021
New Laser Destroys Drug-Resistant Bacteria
Almost 3 million people a year in the U.S. alone are infected with bacteria deemed resistant to antibiotics, according t ...
Loading Comments...