SEP 29, 2017 12:13 PM PDT

Light signals algae to stick

WRITTEN BY: Kerry Evans
2 4 272

Algae like Chlamydomonas use sunlight to perform photosynthesis, that’s old news. New research by Oliver Bäumchen from the Göttingen Max Planck Institute, however, shows that sunlight also tells algae when to adhere to surfaces. (That's new news.) According to Bäumchen, “in experiments with green algae, we found that the algae are sticky and able to adhere to surfaces only under certain light conditions.”

 

The green alga Chlamydomonas

Image: Kenneth Ramos

To the armchair naturalist, this finding is pretty interesting on its own. To the people cultivating algae for biofuels, this finding is more than pretty interesting - it could change the way algae are grown in bioreactors.

Currently, bioreactors aren’t as efficient as they could be because algae stick to the surface of the culture containers - decreasing the amount of light that makes it into the entire culture. No light, no photosynthesis. No photosynthesis, no biofuel. Thus, Bäumchen’s research could help grow a better batch of biofuel.

The group used micropipette force sensors (which I don’t claim to fully understand) to measure the force of flagella-mediated adhesion to a surface in response to different wavelengths of light. Interestingly, they showed that adhesion could be switched on and off, as it were, by switching from white to red light.

Specifically, adhesion peaked when cells were exposed to blue light, suggesting that adhesion is mediated by a blue-light receptor in the algae - possibly phototropin or channelrhodopsins. This switch is surprisingly fast, after the white light was turned on, it took 10.6 ± 9.2 seconds for the flagella to make an adhesive contact with the surface.

Just how do cells make this switch from a free-living to adherent lifestyle? In a particularly clever experiment, Bäumchen and his group tested the effect of proteolysis on light-mediated adhesion. That is, they tested whether some surface-exposed protein mediated the surface attachment.

Under white light, treatment with a protease decreased adhesion. However (here’s the clever part), when they applied the protease under red light and then switched to white light, the cells adhered! This suggests that adhesion-promoting surface proteins are only exposed under adhesion-promoting light conditions!

Sources: EurekAlert and Nature Physics

 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 13, 2018
Microbiology
APR 13, 2018
Learning how Bacteria Recover After Antibiotic Exposure
Scientists have found a mechanism used by microbes to get around the damage inflicted by penicillin.
APR 30, 2018
Cell & Molecular Biology
APR 30, 2018
A New Mechanism of Drug Resistance is Revealed
One way to combat the rise of antibiotic resistance is to find out how bacteria evade the effects of current drugs, to improve drug design.
MAY 02, 2018
Microbiology
MAY 02, 2018
The Microbiome of Nematodes Reveals Their Diversity
Nematodes are tiny worms, and the floors of the world's oceans are crawling with them.
JUN 21, 2018
Clinical & Molecular DX
JUN 21, 2018
Unique Gene Signature in the Blood Indicates TB Diagnosis
A unique series of genes could tell doctors that a person will develop a tuberculosis (TB) infection months before symptoms are visible. From The Francis C
JUN 23, 2018
Microbiology
JUN 23, 2018
In a First, Keystone Virus Sickens a Person
A teenage boy in North Central Florida presented with symptoms that defied diagnosis.
JUL 14, 2018
Microbiology
JUL 14, 2018
Little-known STI may Become a Superbug
Scientists are growing concerned about a common sexually transmitted infection that not many people know about - MG or MGen.
Loading Comments...