OCT 01, 2017 6:13 PM PDT

Cells Can Die When Infected so Others Can Live

WRITTEN BY: Carmen Leitch

Pathogens have a variety of tactics to avoid detection by our immune system, which is always surveilling our bodies for foreign invaders. New research has revealed a backup plan that cells use when the immune response is being evaded. Scientists have long wondered how a host organism is still able to fight infection when the pathogen is using a tactic meant to turn off host immunity. This work, led by Igor E. Brodsky of the University of Pennsylvania, and reported in the Journal of Experimental Medicine, addresses that question; it suggests that cell death helps limit invaders.

Mice infected with the bacteria Yersinia pseudotuberculosis form granulomas -- structures that confine pathogens. But those with a mutant form of the RIPK1 enzyme, rendering cells unable to undergo a particular form of cell death called apoptosis, do not. Researchers believe this RIPK1-induced apoptosis is a strategy that helps dying cells alert their neighbors that an infection is present. / Credit: University of Pennsylvania

"In the context of an infection, the cells that are dying are talking to the other cells that aren't infected," said the senior author of the work, Brodsky, an Assistant Professor in the Department of Pathobiology in Penn's School of Veterinary Medicine. "I don't think of it as altruistic, exactly, but it's a way for the cells that can't respond any longer to still alert their neighbors that a pathogen is present."

Some species of Yersinia bacteria can cause gastrointestinal disease and plague in humans and can inject a protein into infected host cells that allow the bacteria to avoid being detected by the immune system. That protein, YopJ, interferes with important cellular signaling cascades, halting the production of cytokines, which would usually notify other cells about the infection and induce apoptosis. Apoptosis is a type of cell death that was thought to be non-inflammatory. However, mice and humans can survive infections from Yersinia, because the immune response is still activated somehow. 

The researchers wanted to investigate how cells evade Yersinia's strategic protein and focused on an enzyme called RIPK1. It is known to have an important role in inducing cell death and signaling after pathogen detection.

"RIPK1 sits at a key decision point for the cell," explained Brodsky. "Depending on the stimuli the cells see, this protein can transduce a signal to activate gene expression, programmed cell death, or apoptosis, or it can activate another form of cell death called programmed necrosis."

Recent work reported in Nature Cell Biology outlined how RIPK1 assists a cell in switching between promoting survival- or death-associated functions. Although it’s known that disruption in this pathway can induce cell death, it was not known why. The scientists turned to a GlaxoSmithKline mouse in which RIPK1 is mutated, finding that the mutated RIPK1 protein cannot induce apoptosis when it encounters Yersinia bacteria.

"This mouse was really useful for us to be able to distinguish between the inflammatory response and apoptosis," Brodsky noted.

Apoptosis is usually seen as non-inflammatory, but the research showed that RIPK1-induced apoptosis can promote the production of cytokines on its own, possibly by nearby uninfected cells. This helps to initiate an inflammatory response and helps promote survival of the host.

The researchers want to continue to learn more about how cells initiate the production of cytokines by local cells, as well as how this work may be used to induce cancer cells to die.

Learn more about apoptosis from the video.

Sources: AAAS/Eurekalert! Via University of Pennsylvania, Journal of Experimental Medicine

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 30, 2021
Neuroscience
Social Support and Compassion Linked to More Diverse Gut Bacteria
MAR 30, 2021
Social Support and Compassion Linked to More Diverse Gut Bacteria
Researchers from the University of California San Diego have found a link between how much social support, compassion, a ...
MAR 31, 2021
Microbiology
Deep-Sea Microbes Are 'Invisible' to the Human Immune System
MAR 31, 2021
Deep-Sea Microbes Are 'Invisible' to the Human Immune System
Scientists took an exploratory journey to a place in the central Pacific Ocean in Kirbati called the Phoenix Islands Pro ...
APR 02, 2021
Drug Discovery & Development
Anti-Parasitic Medication Could Be Therapy for COVID19
APR 02, 2021
Anti-Parasitic Medication Could Be Therapy for COVID19
What are tropical and neglected diseases? Chronic infections that plague developing nations with often little financial ...
APR 29, 2021
Immunology
A Week for World Immunization
APR 29, 2021
A Week for World Immunization
The World Health Organization (WHO) is calling our attention to World Immunization Week, which comes in the last week of ...
MAY 02, 2021
Cell & Molecular Biology
Coral Cells Can Spit Out the Symbionts They Don't Want
MAY 02, 2021
Coral Cells Can Spit Out the Symbionts They Don't Want
Some microalgae are symbionts, like dinoflagellates that live in coral. A symbiotic sea anemone is seen in this image by ...
JUN 22, 2021
Clinical & Molecular DX
See the Nasties on Your Skin with Your Smartphone
JUN 22, 2021
See the Nasties on Your Skin with Your Smartphone
The skin is home to around 1.5 trillion bacteria, which together with fungi and viruses, make up the skin microbiota. Th ...
Loading Comments...