OCT 01, 2017 06:13 PM PDT

Cells Can Die When Infected so Others Can Live

WRITTEN BY: Carmen Leitch

Pathogens have a variety of tactics to avoid detection by our immune system, which is always surveilling our bodies for foreign invaders. New research has revealed a backup plan that cells use when the immune response is being evaded. Scientists have long wondered how a host organism is still able to fight infection when the pathogen is using a tactic meant to turn off host immunity. This work, led by Igor E. Brodsky of the University of Pennsylvania, and reported in the Journal of Experimental Medicine, addresses that question; it suggests that cell death helps limit invaders.

Mice infected with the bacteria Yersinia pseudotuberculosis form granulomas -- structures that confine pathogens. But those with a mutant form of the RIPK1 enzyme, rendering cells unable to undergo a particular form of cell death called apoptosis, do not. Researchers believe this RIPK1-induced apoptosis is a strategy that helps dying cells alert their neighbors that an infection is present. / Credit: University of Pennsylvania

"In the context of an infection, the cells that are dying are talking to the other cells that aren't infected," said the senior author of the work, Brodsky, an Assistant Professor in the Department of Pathobiology in Penn's School of Veterinary Medicine. "I don't think of it as altruistic, exactly, but it's a way for the cells that can't respond any longer to still alert their neighbors that a pathogen is present."

Some species of Yersinia bacteria can cause gastrointestinal disease and plague in humans and can inject a protein into infected host cells that allow the bacteria to avoid being detected by the immune system. That protein, YopJ, interferes with important cellular signaling cascades, halting the production of cytokines, which would usually notify other cells about the infection and induce apoptosis. Apoptosis is a type of cell death that was thought to be non-inflammatory. However, mice and humans can survive infections from Yersinia, because the immune response is still activated somehow. 

The researchers wanted to investigate how cells evade Yersinia's strategic protein and focused on an enzyme called RIPK1. It is known to have an important role in inducing cell death and signaling after pathogen detection.

"RIPK1 sits at a key decision point for the cell," explained Brodsky. "Depending on the stimuli the cells see, this protein can transduce a signal to activate gene expression, programmed cell death, or apoptosis, or it can activate another form of cell death called programmed necrosis."

Recent work reported in Nature Cell Biology outlined how RIPK1 assists a cell in switching between promoting survival- or death-associated functions. Although it’s known that disruption in this pathway can induce cell death, it was not known why. The scientists turned to a GlaxoSmithKline mouse in which RIPK1 is mutated, finding that the mutated RIPK1 protein cannot induce apoptosis when it encounters Yersinia bacteria.

"This mouse was really useful for us to be able to distinguish between the inflammatory response and apoptosis," Brodsky noted.

Apoptosis is usually seen as non-inflammatory, but the research showed that RIPK1-induced apoptosis can promote the production of cytokines on its own, possibly by nearby uninfected cells. This helps to initiate an inflammatory response and helps promote survival of the host.

The researchers want to continue to learn more about how cells initiate the production of cytokines by local cells, as well as how this work may be used to induce cancer cells to die.

Learn more about apoptosis from the video.

Sources: AAAS/Eurekalert! Via University of Pennsylvania, Journal of Experimental Medicine

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 14, 2019
Microbiology
NOV 14, 2019
A Canine Cancer That Began to Spread From One Dog About 6,000 Years Ago
Dogs can get different kinds of cancers, including one that is transmitted by live cancer cells, which spread through sexual contact....
NOV 14, 2019
Microbiology
NOV 14, 2019
The Long Evolutionary History of Antibiotics and Resistance
The world is full of bacteria that have to share the world with myriad species, and often have to live in competition with other microbes....
NOV 14, 2019
Microbiology
NOV 14, 2019
Unlocking the Secret of Carbapenem Resistance in a Hospital Pathogen
While attention has been brought to the issue and some progress has been made, hospital-acquired infections are still a major problem....
NOV 14, 2019
Microbiology
NOV 14, 2019
Ticks May Spread Multiple Diseases in One Bite
The incidence of tick-borne diseases is on the rise, and ticks present a growing threat to public health worldwide....
NOV 14, 2019
Genetics & Genomics
NOV 14, 2019
Antibiotic-Resistance Genes Can Move From Humans to Animals
Researchers at Clemson University have been investigating how antibiotic resistance can move from humans into animals....
NOV 14, 2019
Cell & Molecular Biology
NOV 14, 2019
Researchers Discover a Cause of Antibiotic Resistance
For years, people have relied on antibiotics to cure bacterial infections, and many of those antibiotics are now becoming less effective....
Loading Comments...