JAN 02, 2018 10:43 AM PST

Three Domains of Life Are More Similar Than We Realized

WRITTEN BY: Kara Marker

Three domains of living things, archaea, bacteria, and eukarya, are organized by shared characteristics fundamental to life: cellular organization, biochemistry, and molecular biology. However, these three entities are more similar than scientists realized - this is the conclusion made by researchers from a new Nature Microbiology study.

Halobacterium salinarum use the same mechanisms to maintain size as bacteria and eukarya. Credit: Alexandre Bison/ Harvard University

Scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and their collaborators conducted a new study with archaea, the single-celled microorganisms that are found in the planet’s most extreme environments. Specifically, they looked at a type of archaea called Halobacterium salinarum and how it regulates cell size.

"This research is the first to quantify the cellular mechanics of size regulation in archaea," explained SEAS’s Ariel Amir. "This allows us to quantitatively explore how these mechanisms work, and build a model that explains the variability within the data and the correlations between key properties of the cell cycle.”

In the past, SEAS researchers successfully showed how a species of bacteria, E. coli, and a type of eukaryote, yeast, work in the same way to make sure cells maintained a consistent size. The domain of eukarya includes plants, animals, fungi, and protists (usually defined as any eukaryote that isn’t a plant, animal, or fungus). In the new study, researchers found that archaea use the same mechanisms for size regulation.

Specifically, researchers describe how H. salinarum regulates cellular size by “adding a constant volume between two events in the cell cycle.” The process is less precise than the one employed by E.coli, but the mechanisms are essentially the same.

"These findings raise really interesting questions about how cellular mechanics evolved independently across all three domains of life," Amir said.

Archaea are often found in Volcanic hot springs, oil wells, and salt lakes. Their preference for extreme environments makes growing them in the lab - and thus understanding them well - nearly impossible.

“[Archaea] blend a lot of the characteristics of both bacteria and eukaryotes," said first author Yejin Eun. "Archaea resemble bacterial cells in size and shape but their cell cycle events - such as division and DNA replication - are a hybrid between eukaryotes and bacteria."

Amir, Eun, and the other scientists involved in the present study are hoping to apply their findings by developing a better understanding of the molecular mechanisms all domains of life use to control cellular growth.

Sources: University of California Museum of Paleontology, Harvard John A. Paulson School of Engineering and Applied Sciences

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 20, 2019
Microbiology
NOV 20, 2019
Flesh-Eating Infection Turns Deadly When Two Microbes Are to Blame
Some illnesses can happen because a person is infected with more than one microbial pathogen, and these pathogens can interact....
DEC 01, 2019
Microbiology
DEC 01, 2019
Some Antacids Appear to Increase the Risk of Gastroenteritis
Proton pump inhibitors (PPIs) are drugs for heartburn relief; they can reduce stomach acid levels....
DEC 06, 2019
Microbiology
DEC 06, 2019
Hybrid Antibiotic Can Destroy Dangerous Staph Biofilms
When staph begins to grow on medical devices like implants used on wounds, artificial joints, or catheters, they can cause chronic, serious infections....
JAN 06, 2020
Drug Discovery & Development
JAN 06, 2020
Designing Drugs To Fight off C. Diff Infections
A study published by PNAS explains breakthrough research around designing drugs that target C. diff bacterial infections that result in 15,000 deaths in th...
JAN 17, 2020
Cardiology
JAN 17, 2020
Eating Walnuts Reduces Risk for Heart Disease
Walnuts may be more than just a tasty snack. Researchers from the University of Pennsylvania have found that they may also promote healthy gut bacteria, wh...
FEB 14, 2020
Microbiology
FEB 14, 2020
Beneath the Surface, We All Carry the Same Microbes in Our Skin
Our skin is a critical barrier, and it is made up of three layers. It also carries a community of microbes - a skin microbiome....
Loading Comments...