APR 07, 2015 02:56 PM PDT

Athletic Swamp Bacteria Spontaneously Mobilize Into Crystals

WRITTEN BY: Judy O'Rourke
Insects form swarms, fish school, birds flock together. Likewise, one species of bacteria forms dynamic, living crystals, says new research from Rockefeller University.

Biophysicists have revealed that fast-swimming, sulfur-eating microbes known as Thiovulum majus can organize themselves into a two-dimensional lattice composed of rotating cells, the first known example of bacteria spontaneously forming such a pattern.
Living crystal: Thiovulum cells cluster together to form a repeating pattern known as a hexagonal lattice. It is the densest geometric arrangement for things of uniform size, and it appears frequently in nature, such as in bees' honeycomb.
"The regular, repeated arrangement of the microbial cells shares the geometry of atoms within a mineral crystal, but the dynamics are fundamentally different; the bacterial crystals constantly move and reorganize as a result of the power generated by individual cells within them," says study author Albert Libchaber, Detlev W. Bronk Professor and head of the Laboratory of Experimental Condensed Matter Physics.

The single cells' rotating motion-which forms the crystals by drawing in other cells and then powers the crystals' own motion-led the researchers to dub them "microscopic tornadoes" in awaiting publication in Physical Review Letters.

It's no coincidence that Thiovulum majus is among the fastest swimming bacteria known. Capable of moving up to 60 body lengths per second while rotating rapidly, these microbes propel themselves using whip-like flagella that cover their surfaces. But in its natural habitat, deep in marsh water, these microbes don't travel much. They tether themselves to a surface and use their flagella to generate a current strong enough to pull in the nutrients they need: sulfides from rotting organic matter and oxygen used to burn the sulfides.

What one cell can do, many can do much better, and in previous work, Libchaber and postdoc Alexander Petroff, examined how groups of tethered Thiovulum organize and reorganize themselves so as to pull in more nutrients.

"Because this microbe can generate so much force with its flagella, we became curious about what dynamics might emerge when many swim freely together," Petroff says of the investigation, which began when study co-author Xiao-Lun Wu, University of Pittsburg, was visiting. "After we put an enriched culture of Thiovulum under a microscope, this beautiful structure appeared."

Researchers set about determining the balance of physical forces that explain how the microbes organize themselves into crystals.

It's not clear why the microbes form these crystals, or even if they do so in habitats outside of microscope slides. But the coherent group behavior responsible for generating the crystals is a common phenomenon, known as collective dynamics.

"Usually, when birds, insects, fish, or even bacteria move together in a coordinated fashion, you see coherent motion on the scale of the group, but disorder at the level of the individual," Libchaber says. "This is not so for Thiovulum. Instead of turbulent movement, the individual cells form extremely regular crystalline structures. It appears that Thiovulum crystals represent a new form of collective dynamics."

[Source: Rockefeller University]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JUL 04, 2018
Videos
JUL 04, 2018
How Did Viruses Originate?
There is still a debate about whether or not viruses are a form of life, and we really don't know where they came from....
JUL 24, 2018
Microbiology
JUL 24, 2018
Salmonella Outbreak Linked to Raw Turkey Products
Researchers at the CDC are trying to learn more about a rash of Salmonella infections....
AUG 06, 2018
Microbiology
AUG 06, 2018
How Undetected Viral Infections Impact our Health
It seems that when people are infected with CMV but don't have any obvious symptoms, there may still be effects....
AUG 24, 2018
Microbiology
AUG 24, 2018
How the E. coli Bacterium Can Benefit Us
Often thought of as a dangerous germ, it seems that E. coli may be playing a helpful role in the uptake of iron....
SEP 29, 2018
Microbiology
SEP 29, 2018
In a First, Rat Variation of Hepatitis E Found in a Person
It was found in a 56-year-old Hong Kong man....
OCT 16, 2018
Microbiology
OCT 16, 2018
Simple Test Rapidly Diagnoses Antibiotic-resistant Infections
If we get a bacterial infection, doctors use antibiotics to treat it. But sometimes people are infected by pathogens that are resistant to drugs....
Loading Comments...