MAY 24, 2018 6:58 PM PDT

400 Million Years of Evolution can Help Improve Therapeutics

WRITTEN BY: Carmen Leitch

Sometimes the past has a lot to teach us. Scientists have recently learned more about human immunodeficiency virus (HIV) by studying the evolution of an anti-viral protein that dates back 400 million years and first arose with life in the sea. Investigators from Western University in Ontario wanted to know more about the origins of HERC5, a protein that was recently proposed to be an inhibitor of HIV. Reporting in the Journal of Virology, a team led by Stephen Barr, Ph.D., assistant professor at Western's Schulich School of Medicine & Dentistry showed that the gene first came about in fish and has been running an evolutionary race against viruses ever since.

The researchers, featured in the video above, found that a battle that played out over millions of years created genes that could make complex defenses to protect against the viral threat. That only made the viruses themselves adapt and evolve to evade those defenses. 

With sequencing tools, the team determined that a coelacanth, a 400 million-year-old fish, carried a HERC5 gene that can easily disrupt SIV, simian immunodeficiency virus, the primate version of HIV. The protein cannot block HIV, unfortunately.

"Of course HIV and these modern-day viruses that we study aren't present in fish, but ancient versions of them are. So what we assume is that as these ancient retroviruses wreaked havoc on marine life, their immune systems had to develop a defense," Barr said. "We think that one of those defenses is the HERC family. As retroviruses evolved, eventually giving rise to HIV, different variants of HERC genes emerged to combat these infections."

It’s possible that all of those years spent changing and developing evasive maneuvers also enabled viruses to get better at jumping the species barrier. Some such zoonotic diseases also increase in virulence when they jump.

"By learning the big picture and identifying all the different proteins that can make up this defense against viruses, we can develop a more global approach to advance antiviral drugs. Our future goal is to discover the mechanisms that viruses use to inactivate HERCs and other similar antiviral proteins so that we can exploit this knowledge for the development of novel antiviral drugs," said Barr.


Sources: AAAS/Eurekalert! Via University of Western Ontario, Emerging Microbes & InfectionsJournal of Virology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 23, 2021
Immunology
Assay Detects Antibodies in Asymptomatic COVID Carriers
MAR 23, 2021
Assay Detects Antibodies in Asymptomatic COVID Carriers
It is estimated that around one in five people infected with SARS-CoV-2 will not show any infection symptoms. Some of th ...
APR 06, 2021
Microbiology
A Bacterial Protein That Causes Nausea
APR 06, 2021
A Bacterial Protein That Causes Nausea
The bacterium Campylobacter is thought to cause more cases of food poisoning than any other microbial pathogen. Scientis ...
APR 12, 2021
Cell & Molecular Biology
Deep Subsurface Microbes Are "Living Fossils"
APR 12, 2021
Deep Subsurface Microbes Are "Living Fossils"
Researchers were shocked when they saw the results of a genetic analysis comparing various microbes from around the worl ...
MAY 16, 2021
Microbiology
Organic Meat is Less Likely to Harbor Nasty Pathogens
MAY 16, 2021
Organic Meat is Less Likely to Harbor Nasty Pathogens
Organic food has been touted as healthier, but that's been debated. While meat that is produced organically now has to m ...
JUN 17, 2021
Immunology
How T Cells Sense Dangerous Invaders
JUN 17, 2021
How T Cells Sense Dangerous Invaders
T cells form a major part of our immune defenses, protecting us against the constant barrage of potentially pathogenic p ...
JUN 16, 2021
Microbiology
DNA - It's What's for Dinner (For Some Bacteria)
JUN 16, 2021
DNA - It's What's for Dinner (For Some Bacteria)
There may be a trillion species of microbes on the planet, so clearly there's still a lot we don't know about these micr ...
Loading Comments...