APR 28, 2015 04:59 PM PDT

Scientists Pinpoint Brain-Swelling Mechanism

A team of UBC researchers has made a significant discovery uncovering the cause of brain swelling after trauma to the head. Their research, published today in Cell, paves the way for a preventative drug treatment for severe brain damage following stroke, infection, head injury or cardiac arrest.
{##image##]
By turning off a single gene, scientists from the Djavad Mowafaghian Centre for Brain Health (DMCBH), a partnership of UBC and Vancouver Coastal Health, were able to successfully stop swelling in rodent brains.

Brain swelling is a gradual process that becomes life-threatening within days of the injury, and is caused by sodium chloride drawing water into the nerve cells. This swelling-known as cytotoxic edema-eventually kills brain cells.

"We've known for years that sodium chloride accumulation in neurons is responsible for brain swelling, but now we know how it's getting into cells, and we have a target to stop it," explains brain researcher Brian MacVicar, co-director of DMCBH with the Vancouver Coastal Health Research Institute and the study's principal investigator.

The team, including Terrance Snutch, director of translational neuroscience at the DMCBH, developed several novel technological approaches to identify the cascade of events that took place within individual brain cells as they swelled.

They then switched off the expression of different genes and were able to pinpoint a single protein-SLC26A11-that acts as a channel for chloride to enter nerve cells. By turning off the chloride channel, the accumulation of fluid into the cells was halted, and nerve cells no longer died.

"It was quite a surprising result, because we had few indications as to what this protein did in the brain," said Ravi Rungta, then a graduate student in the MacVicar lab and the paper's lead author.

Though the technique used by the researchers to block swelling and cell death is unlikely to work quickly enough to mitigate swelling in the case of real head trauma, the discovery has provided a target for drug development.

"This discovery is significant because it gives us a specific target - now that we know what we're shooting at, we just need the ammunition," said MacVicar. "That's what we're doing now: looking for drugs to inhibit the chloride channel."

Source: UBC
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 15, 2019
Cell & Molecular Biology
SEP 15, 2019
How Worms Can Help Researchers Learn More About PTSD
Worms can be traumatized, and the researchers can find the neurons responsible; it can help us learn how hardship impacts the brain....
SEP 15, 2019
Drug Discovery
SEP 15, 2019
Anticholinergic Drugs and Dementia?
A link between anticholinergic drug use and cognitive impairment was recently observed from observational studies on randomized clinical trials. Regenstrie...
SEP 15, 2019
Drug Discovery
SEP 15, 2019
The Composition of Cerebrospinal Fluid in MS patients Could Be The Key To Treatments That Halt Progression
The range of disability for individuals living with multiple sclerosis (MS) varies significantly depending on the relapsing/remitting form of the disease....
SEP 15, 2019
Cell & Molecular Biology
SEP 15, 2019
Exosomes are Involved in Brain Development
Researchers have learned more about the role of exosomes in neurodevelopment....
SEP 15, 2019
Technology
SEP 15, 2019
Novel Neural-Network Can Determine What Emotion An Image Evokes
Ever wondered if a computer may someday differentiate between joyful images from a depressing one? Can it someday tell if a film is a romantic comedy or a...
SEP 15, 2019
Genetics & Genomics
SEP 15, 2019
The Genetic Reasons You're Addicted to Alcohol
Over the years, an increasing body of research has emerged looking at the genetic risk factors for alcoholism. Although some associations are inconclusive,...
Loading Comments...