JUN 13, 2014 12:00 AM PDT

Penn Researchers Show How Human Learning Is Altered by Electrical Stimulation of Dopamine Neurons

Stimulation of a certain population of neurons within the brain can alter the learning process, according to a team of neuroscientists and neurosurgeons at the University of Pennsylvania. A report in the Journal of Neuroscience describes for the first time that human learning can be modified by stimulation of dopamine-containing neurons in a deep brain structure known as the substantia nigra. Researchers suggest that the stimulation may have altered learning by biasing individuals to repeat physical actions that resulted in reward.

"Stimulating the substantia nigra as participants received a reward led them to repeat the action that preceded the reward, suggesting that this brain region plays an important role in modulating action-based associative learning," said co-senior author Michael Kahana, PhD, professor of psychology in Penn's School of Arts and Sciences.

Eleven study participants underwent deep brain stimulation (DBS) treatment for Parkinson's disease. During an awakened portion of the procedure, participants played a computer game where they chose between pairs of objects that carried different reward rates (like choosing between rigged slot machines in a casino). The objects were displayed on a computer screen, and participants made selections by pressing buttons on hand-held controllers. When they got a reward, they were shown a green screen and heard a sound of a cash register (as they might in a casino). Participants were not told which objects were more likely to yield reward, but that their task was to figure out which ones were "good" options based on trial and error.

When stimulation was provided in the substantia nigra following reward, participants tended to repeat the button press that resulted in a reward. This was the case even when the rewarded object was no longer associated with that button press, resulting in poorer performance on the game when stimulation was given (48 percent accuracy), compared to when stimulation was not given (67 percent).

"While we've suspected, based on previous studies in animal models, that these dopaminergic neurons in the substainia nigra play an important role in reward learning, this is the first study to demonstrate in humans that electrical stimulation near these neurons can modify the learning process," said the study's co-senior author Gordon Baltuch, MD, PhD, professor of neurosurgery in the Perelman School of Medicine at the University of Pennsylvania. "This result also has possible clinical implications through modulating pathological reward-based learning, for conditions such as substance abuse or problem gambling, or enhancing the rehabilitation process in patients with neurological deficits."

The research team included lead study author Ashwin Ramayya, a neuroscience MD/PhD student at Penn, along with Amrit Misra from Drexel University. The study was supported by the National Institutes of Health (MH55687).
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
OCT 24, 2018
Neuroscience
OCT 24, 2018
Self-Restraint And Will Power Improves Weight-Loss: Scientific Evidence
Weight loss success linked with active self-control regions of the brain...
OCT 30, 2018
Cannabis Sciences
OCT 30, 2018
Marijuana Withdrawal Syndrome
The perception of marijuana's safety is prevalent among chronic users. Dr. Samuel Wilkinson and colleagues from the Department of Psychiatry at Ya...
NOV 07, 2018
Immunology
NOV 07, 2018
Inflammation Can Steal Your Sleep
A link between inflammation and the circadian rhythm has been determined in mouse models. High-fat-diets may be the cause....
NOV 18, 2018
Neuroscience
NOV 18, 2018
How does the brain know when we are full?
Feeling full or satiation is conveyed to the brain by the gut hormones via the enteric neuronal afferents and the endocrine feedback pathways....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Behavior Predicting Neural Code Identified
Perceptual choice behavior, taking action based on the information received from the senses is often described by mathematical models...
JAN 05, 2019
Cell & Molecular Biology
JAN 05, 2019
Insight Into the Molecular Basis of Differences in Male and Female Brains
Using a roundworm model, researchers have found a collection of genes that change how male and female brains develop....
Loading Comments...