DEC 29, 2015 05:00 AM PST

Understanding How the Brain Can Heal

Brain injuries and neurodegenerative diseases are devastating to those who suffer them and incredibly complex for the doctors and health professionals who treat them. There is much that remains unknown about how the brain heals and how to slow the progression of disease. A project being undertaken at  Rice University is trying to advance the science of how neurons in the brain form networks and from that data they hope to gain new insights on how the brain can heal itself.
New research hopes to show how neurons form networks to heal the brain

The project at Rice is funded by the National Science Foundation and is a combination of experiments and number crunching analyses to figure out how the brain organizes the millions of signals and input it receives.  The objective is that once it is understood how the brain handles the traffic, develops neuronal networks and processes input these events can then be manipulated to treat brain injuries, strokes and diseases like Alzheimer’s and Parkinson’s.
 
Researchers and experts from Rice are involved in the areas of nanotechnology, developemental biology and systems biology. Rice bioengineer Amina Qutub, an authority on protein signaling and hypoxia, is leading the effort and she is joined by electrical engineer Jacob Robinson, whose unique microfluidic devices help characterize the electrical properties of living cells, and developmental biologist Daniel Wagner, who develops zebrafish models of human disease. Through the National Science Foundation and President Obama’s BRAIN Initiative, just over $13 million in grants have been awarded for research into neuroscience. 
 
For the first part of the research Qutub and her team will study how neural progenitor cells—the building blocks of neurons—form networks. Electrical activity, chemical signals and spatial patterns must all be looked at through experiments in the lab on human cells to fully understand how the networks within the brain are created.
 
In a press release from Rice, Qutub said,  “We’re focusing on how neural progenitors become functional neural networks. That process is critical for regenerating nerve tissue. There’s still debate over where the progenitors are located and how they’re recruited to areas of injury, but we know they’re present in the brain.” 
  
Once there is enough data on this part of the process, a large computer model will be created to crunch the numbers from the lab trials into a qualitative analysis. Then electrical activity will be measured using a device being developed in the electrical engineering lab at Rice, overseen by study co-lead Jacob Robinson. His method will involve recording electrical activity levels at different points in the development of the progenitor cells to see just when single cells start to form groups or networks. Robinson’s lab will record electrical activity in neural progenitor cells at different points in their development to see how they mature to a functional state.

The third piece of the puzzle is Daniel Wagner’s zebrafish lab where he uses imaging equipment to see into tiny transparent embryos ad record how certain biological processes happen. Wagner has already developed a specific species of zebrafish for the project.
 
Qutub hopes that what the team learns at Rice can be made available to the global neuroscience community via open-source analysis toolkits.  Check out the video below to hear more about this research.
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
SEP 10, 2018
Neuroscience
SEP 10, 2018
Can Scientists Mimic The Effect of Exercise to Improve Memory?
Dementia is a growing problem for healthcare providers, patients, and families. The WHO estimates that globally more than 47 million people are living with...
SEP 27, 2018
Neuroscience
SEP 27, 2018
A New Science Center For Brain Research
Neuroscientists all over the globe are actively looking for more effective treatments for Alzheimer's disease, but it hasn't been a very productive...
OCT 03, 2018
Health & Medicine
OCT 03, 2018
Does Alcohol Cause Premature Aging?
When studying the brain, the larger a study is, the more data can be gathered, and the more accurate conclusions can be. The most extensive brain imag...
OCT 10, 2018
Neuroscience
OCT 10, 2018
Can Meditation Change the Brain?
When someone says they are going to meditate, what comes to mind? Someone clad in a loose robe, sitting cross-legged in a sweat tent, repeating a mantra? W...
NOV 01, 2018
Cannabis Sciences
NOV 01, 2018
Meet Anandamide - The "Bliss" Molecule
Many of us are aware of the relatively new discovery of the endocannabinoid system (ECS). This is the system which is hijacked by the famous phytocannabinoid (i.e. from cannabis) compounds......
NOV 13, 2018
Clinical & Molecular DX
NOV 13, 2018
A Lighthouse Named Biomarker
Lighthouses are used to warn ships not to crash inland. Virgil was sent in to guide Dante through Hell. Marge Simpson, Homer’s better half oversees h...
Loading Comments...