JAN 26, 2016 5:03 AM PST

How Much Memory Can The Brain Hold?

How much can the human brain hold, in terms of memory? Turns out, it can hold way more than researchers originally thought. Researchers at the Salk Institute, along with colleagues from the University of Texas, Austin, MIT, Howard Hughes Medical Center and UC San Diego, have released new data from a study they conducted that shows the neural connections that process and store memory have a capacity much higher than most estimates. The research also brought new information about the energy efficiency of the brain and how it does so much and still conserves energy.
New information shows the brain can hold much more information than thought.

In a press release from the institute Terry Sejnowski, Salk professor and co-senior author of the paper, which was published in the journal eLife said, “This is a real bombshell in the field of neuroscience. We discovered the key to unlocking the design principle for how hippocampal neurons function with low energy but high computation power. Our new measurements of the brain’s memory capacity increase conservative estimates by a factor of 10 to at least a petabyte, in the same ballpark as the World Wide Web.” 
 
How does the brain do this though? Any information in the brain, memories, thoughts or motor skills are the result of patterns of electrical and chemical activity in the brain. Much like the electrical workings of a computer, the neurons form branches like circuits. When two neurons interact at a junction in the brain called a synapse this electrical activity is live, like a sparking wire. Neurons handle input and out put via axons and dendrites across the synapses and that is how memory is processed and stored.
 
The team at the Salk Institute along with co-senior author Kristen Harris from the University of Texas, Austin used the hippocampus of a rat to study each synapse. Using advanced microscopy, the team set out to build a 3D model of the rat brain’s memory center so they could see in detail what was happening in the synapses. What that found was that about 10-20% of the time, a single axon from one neuron formed two synapses reaching out to a single dendrite of a second neuron, signifying that the first neuron seemed to be sending a duplicate message to the receiving neuron. More synapses mean more activity, larger surface area and more neurotransmitters, all which translates into larger amounts of memory that the brain can hold. 
 
It has previously been thought that the brain only contained a few different sizes of synapses. The new research puts the number of different synapse sizes at 26. In their work the team was able to measure the difference between the smaller and larger ones and came up with only a difference of 8%. With that number they were able to use complex algorithms to estimate how much information the brain can hold.
 
The findings also could offer valuable insight into engineers who design and build computers. The human adult brain, while awake, generates around 20 watts of power---barely enough to run a low power light bulb. With all its electrical efficiency, synaptic firing and capacity, there is likely information in this study that could bring new designs in computer hardware and chips.
 
Check out the video to learn more about the study and what the new data could do to advance neuroscience.
 
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
JUL 05, 2021
Neuroscience
Immature Astrocytes Promote High Levels of Neuroplasticity
JUL 05, 2021
Immature Astrocytes Promote High Levels of Neuroplasticity
Researchers from France have found that astrocytes do more than support neurons in the central nervous system. They foun ...
JUL 08, 2021
Cannabis Sciences
High-potency Cannabis Impacts Memory, but not Decision-Making
JUL 08, 2021
High-potency Cannabis Impacts Memory, but not Decision-Making
High-potency cannabis products impair memory in various ways, according to new research published in Scientific Rep ...
AUG 08, 2021
Cell & Molecular Biology
How Stress Can Impact Gene Expression in the Brain
AUG 08, 2021
How Stress Can Impact Gene Expression in the Brain
University of Bristol researchers have learned more about how chronic stress may be linked to health problems, both phys ...
SEP 07, 2021
Neuroscience
Researchers Harness the Power of Machine Learning to Facilitate Drug Repurposing
SEP 07, 2021
Researchers Harness the Power of Machine Learning to Facilitate Drug Repurposing
Using machine learning and massive data sets from patients, researchers identify drug and drug combinations that could b ...
SEP 07, 2021
Clinical & Molecular DX
Dogs Can Pick Up the 'Seizure Smell', Alert Their Owners
SEP 07, 2021
Dogs Can Pick Up the 'Seizure Smell', Alert Their Owners
Dogs offer so much more than companionship and unconditional love. New research shows that for patients with epilepsy, t ...
SEP 14, 2021
Health & Medicine
This is your brain on doom: Steven Pinker's New Book on Rational and Irrational Societies
SEP 14, 2021
This is your brain on doom: Steven Pinker's New Book on Rational and Irrational Societies
In his new book, cognitive psychologist and linguist, Steven Pinker, argues for more rational societies
Loading Comments...