MAR 16, 2016 9:01 AM PDT

Magneto: the Magnetic Field-Responsive Ion Channel

WRITTEN BY: Cassidy Reich
Chemogenetics and optogenetics have been game-changers in neuroscience research. By providing precise control over neural circuits, scientists have been able to use these tools to study behavior and which neurons and circuits are involved in disease in a very in-depth and targeted way. However, as revolutionary as chemogenetics and optogenetics have been, they do have their limitations. Chemogenetics has undesirable kinetics because it takes some time for the injected activator molecule to reach the neurons expressing the receptor and the clearance of the activator molecule can be unpredictable. Optogenetics is much more controlled, but the limitation lies in the fact that light has to reach the neuron being targeted. That makes optogenetics very invasive and limits the ability to study neurons deep in the brain.

Because of how useful but limited these techniques are, a group led by Ali Güler at the University of Virginia have created an ion channel that responds to magnetic fields. The kinetics for this ion channel, obviously dubbed “Magneto,” are fast and controlled, like optogenetics, and using it is noninvasive, like chemogenetics. To build this ion channel, the researchers started with TRPV4, a cation channel that opens in response to stretching of the cell membrane. Exactly how these kinds of mechano-responsive ion channels work is still not known, but it proved to be useful in this construct. To make TRPV4 responsive to magnetic fields, they created a fusion protein with ferritin, an iron storage protein with paramagnetic properties. The idea behind this fusion is that the magnetic field will cause the ferritin to move and pull so that TRPV4 will respond to the pulling by opening and letting Na+ and Ca2+ into the neuron. Below is a schematic of how TRPV4 works normally (a) and how the fusion protein Magneto functions (b).
 

After trial and error and with the addition of a cell membrane-targeting sequence to improve localization and efficacy, the researchers had Magneto. Magneto was tested in multiple models, including mice and zebrafish. Brain slices from mice expressing Magneto in excitatory neurons exhibited rapid neuronal firing in a 50 milliTesla magnetic field and abruptly stopped firing when the magnetic field was turned off. 50 milliTeslas is stronger than a refrigerator magnetic but perfectly safe. For reference, an MRI machine produces a magnetic field between 1 and 3 Teslas. In zebrafish, Magneto was expressed in a specific type of neuron, the Rohon-Beard sensory neurons, which cause the zebrafish larvae to curl up when stimulated. In the presence of a magnetic field, the zebrafish larvae curled up 10 times more often than larvae not in a magnetic field. In another mouse construct, Magneto was expressed in medium spiny neurons in the striatum which are involved in reward behavior. Mice were allowed to explore two chambers, one with a magnetic field and one without. Wild-type mice showed no preference between the two chambers, but the mice expressing Magneto showed a significant preference for the magnetic field chamber. The magnetic field opened Magneto to stimulate the medium spiny neurons which activated a reward circuit that made the mice prefer the magnetic field.

These first experiments with Magneto look very promising, but the group already has ideas for how it can be improved. TRPV4 has ligand binding sites, so one way to improve the specificity of Magneto would be to get rid of these binding sites so that the only thing that could activate Magneto is a magnetic field. Even though Magneto in its current incarnation is a prototype, it has the potential to be a game-changing research tool like optogenetics.

Sources: AlzForum  and Nature Neuroscience
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
SEP 16, 2020
Immunology
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
SEP 16, 2020
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
Scientists have discovered that depressed individuals show higher levels of inflammation as well as elevated fat concent ...
SEP 21, 2020
Neuroscience
Insufficient Sleep Makes It Harder to Enjoy Life, Study Says
SEP 21, 2020
Insufficient Sleep Makes It Harder to Enjoy Life, Study Says
A growing body of research stresses the importance of getting a good night's sleep- whether it's to bolster your ...
SEP 29, 2020
Cell & Molecular Biology
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
SEP 29, 2020
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
Researchers have used imaging tools to show that Parkinson's disease may actually be two different diseases, one that st ...
OCT 15, 2020
Cannabis Sciences
Can Cannabis Treat Traumatic Brain Injury?
OCT 15, 2020
Can Cannabis Treat Traumatic Brain Injury?
Traumatic brain injury (TBI) happens when the head is violently hit by an object or when an object pierces the skull and ...
NOV 01, 2020
Microbiology
SARS-CoV-2 Disrupts the Blood Brain Barrier
NOV 01, 2020
SARS-CoV-2 Disrupts the Blood Brain Barrier
SARS-CoV-2, which causes COVID-19 has to get into cells to cause infection. It does so with a spike protein on its surfa ...
NOV 07, 2020
Cannabis Sciences
Does Cannabis Make Bipolar Disorder Better or Worse?
NOV 07, 2020
Does Cannabis Make Bipolar Disorder Better or Worse?
While anecdotal evidence and some case studies suggest cannabis may benefit those with bipolar disorder, studies have re ...
Loading Comments...