JAN 06, 2014 12:00 AM PST

Are Brain-Training Programs Effective?

WRITTEN BY: Jen Ellis
"Brain Training" programs and apps have been gaining in popularity in recent years. For those of you who thought that's what high school and college were for, this variety of brain training refers to the use of relatively simple mind exercises-games and tasks for computers and mobile devices that serve as quick mental challenges to improve cognitive ability.

The games are designed to address a specific category of brain function such as attention, working memory, or problem solving capabilities. Progress in a particular field is measured and tracked over time based on performance changes in these tasks (typically by finishing tasks quicker, or finishing more of them in a set time.)

There's little doubt that these measurements can track tangible improvements in that particular task-but do they translate to general improvements in brain function? In other words, does your increasing ability to recall random phrases in a game make it more likely you'll get home from the grocery store without forgetting the milk and eggs, or that you'll remember the names of everyone you met at your sister's wedding?

Groups like Lumosity, one of the most well-known sites offering brain-training exercises, can point to a significant amount of scientific research to back up their claims. However, at least in one area, a recent study by researchers at Oregon University suggests that transferring game improvements to general cognitive improvement can't necessarily be generalized. These findings were published in the Journal of Neuroscience.

The team studied inhibitory control through a task known as a "stop signal task." Participants from 18-30 years in age were instructed to push an arrow key as fast as possible upon receiving a "go" signal. During the trials, one-quarter of the participants received a "stop" signal instructing them to stop pressing the arrow key; a control group was given an alternate task unrelated to inhibitory control. Researchers adjusted the difficulty to individual skills, allowing participants to find their own level of training.

Activity changes in the brain were tracked using fMRI (Functional Magnetic Resonance Imaging). The research team found that activity in two areas of the brain known to be associated with inhibitory control was lowered during the exercise but raised just before the inhibition control period. During inhibition control, further changes were shown, but these changes were relatively small.

According to the research team, the training linked the performance improvements to specific cues predicting that inhibitory control was going to be needed-basically, for that specific task under those specific conditions, the brain learned how to better predict when to stop the task. This implies the improvement may not necessarily be generalized. For example, an Olympic sprinter who used this style of training to get a better jump off of the blocks may not see any improvement unless the same cues are available in the training and the Olympic event.

This work doesn't suggest that brain-training programs aren't useful, but it does suggest that transfer into real-world improvements may not always be straightforward.
About the Author
You May Also Like
OCT 15, 2021
Drug Discovery & Development
Oxytocin Therapy Shows No Benefit for Autistic Children
OCT 15, 2021
Oxytocin Therapy Shows No Benefit for Autistic Children
Intranasal oxytocin therapy does not benefit autistic children and adolescents. The corresponding study was published in ...
NOV 01, 2021
Cell & Molecular Biology
Is This Closed Barrier Why Psychiatric & Bowel Disorders are Linked?
NOV 01, 2021
Is This Closed Barrier Why Psychiatric & Bowel Disorders are Linked?
Inflammatory bowel disease (IBD) is a term that describes chronic gut inflammation and includes ulcerative colitis and C ...
NOV 04, 2021
Neuroscience
In The Immortal Words of Bart Simpson, Always Thinking Two Moves Ahead: Forward Thinking and Social Control
NOV 04, 2021
In The Immortal Words of Bart Simpson, Always Thinking Two Moves Ahead: Forward Thinking and Social Control
Researchers study feeling of social control to better understand the brain's decision-making center
DEC 29, 2021
Cell & Molecular Biology
Brain Cells in a Dish Were Taught to Play a Game of Pong
DEC 29, 2021
Brain Cells in a Dish Were Taught to Play a Game of Pong
If you were around in the 80s you might remember one of the first video games, called Pong. While it looks ridiculously ...
DEC 30, 2021
Cell & Molecular Biology
Researchers Discover Immune Cell Subtype Linked to MS and Neuroinflammation
DEC 30, 2021
Researchers Discover Immune Cell Subtype Linked to MS and Neuroinflammation
We still don't know exactly what causes multiple sclerosis (MS), or many other disorders that involve inflammation in th ...
JAN 14, 2022
Technology
Do People Trust Artificial Intelligence?
JAN 14, 2022
Do People Trust Artificial Intelligence?
What exactly is artificial intelligence (AI)?  It may sound like science fiction, and often conjures up images of m ...
Loading Comments...