JAN 06, 2014 12:00 AM PST

Are Brain-Training Programs Effective?

WRITTEN BY: Jen Ellis
"Brain Training" programs and apps have been gaining in popularity in recent years. For those of you who thought that's what high school and college were for, this variety of brain training refers to the use of relatively simple mind exercises-games and tasks for computers and mobile devices that serve as quick mental challenges to improve cognitive ability.

The games are designed to address a specific category of brain function such as attention, working memory, or problem solving capabilities. Progress in a particular field is measured and tracked over time based on performance changes in these tasks (typically by finishing tasks quicker, or finishing more of them in a set time.)

There's little doubt that these measurements can track tangible improvements in that particular task-but do they translate to general improvements in brain function? In other words, does your increasing ability to recall random phrases in a game make it more likely you'll get home from the grocery store without forgetting the milk and eggs, or that you'll remember the names of everyone you met at your sister's wedding?

Groups like Lumosity, one of the most well-known sites offering brain-training exercises, can point to a significant amount of scientific research to back up their claims. However, at least in one area, a recent study by researchers at Oregon University suggests that transferring game improvements to general cognitive improvement can't necessarily be generalized. These findings were published in the Journal of Neuroscience.

The team studied inhibitory control through a task known as a "stop signal task." Participants from 18-30 years in age were instructed to push an arrow key as fast as possible upon receiving a "go" signal. During the trials, one-quarter of the participants received a "stop" signal instructing them to stop pressing the arrow key; a control group was given an alternate task unrelated to inhibitory control. Researchers adjusted the difficulty to individual skills, allowing participants to find their own level of training.

Activity changes in the brain were tracked using fMRI (Functional Magnetic Resonance Imaging). The research team found that activity in two areas of the brain known to be associated with inhibitory control was lowered during the exercise but raised just before the inhibition control period. During inhibition control, further changes were shown, but these changes were relatively small.

According to the research team, the training linked the performance improvements to specific cues predicting that inhibitory control was going to be needed-basically, for that specific task under those specific conditions, the brain learned how to better predict when to stop the task. This implies the improvement may not necessarily be generalized. For example, an Olympic sprinter who used this style of training to get a better jump off of the blocks may not see any improvement unless the same cues are available in the training and the Olympic event.

This work doesn't suggest that brain-training programs aren't useful, but it does suggest that transfer into real-world improvements may not always be straightforward.
About the Author
You May Also Like
DEC 06, 2019
Neuroscience
DEC 06, 2019
Gut Bacteria Influences Response to Fear
The last decade has seen an increasing amount of interest on how our gut bacteria, or microbiome, influences our health. Now, from a new study looking at m...
DEC 20, 2019
Neuroscience
DEC 20, 2019
Hand-Motion Center of the Brain Involved in Speech
During a long-term study focused on improving computer-assistant interfaces for quadriplegia patients, researchers at Stanford University were able to use...
JAN 09, 2020
Neuroscience
JAN 09, 2020
Why Do you Have a Higher IQ than your Grandparents?
In the 1980’s James Flynn found that on average, human intelligence quotients (IQ) increase by 3 points every 10 years. Known as the “Flynn eff...
JAN 17, 2020
Genetics & Genomics
JAN 17, 2020
Soybean Oil Found to Change Gene Expression in the Brain
Soybean oil is used for frying and for making foods like margarine and salad dressing. It's the most commonly produced and consumed edible oil in the US....
JAN 19, 2020
Neuroscience
JAN 19, 2020
New Proteins Found in the Optical Processing of Lazy Eyes
Ophthalmology – Amblyopia: By Christine Law M.D.   Researchers in the Bear Lab at the Massachusetts Institute of Technology found surprising con...
FEB 12, 2020
Neuroscience
FEB 12, 2020
How AI and Neuroscience Propel Each Other Forward
Traditional notions of artificial intelligence (AI) are outdated. Rather than simply being able to understand inventory lists, or make binary decisions bas...
Loading Comments...