AUG 04, 2016 09:15 AM PDT

How Anesthesia Acts on the Brain

General anesthesia carries many risks with it, as does any surgical procedure. The effect that anesthesia medication has on the body and particularly the brain isn’t completely known. Different patients will respond in different ways to medications and close monitoring during surgery is crucial. The drug Propofol  made headlines after being used by Michael Jackson for insomnia, as opposed to surgery. Autopsy reports on Jackson showed that he died of an overdose of the drug. While it’s still used safely during supervised surgeries, finding out how the drug acts on the brain will increase awareness of how best to use it in a hospital setting and hopefully decrease its use outside of the OR.
 This is your brain on Propofol
Anyone who has had surgery can attest that you are seemingly awake one minute and unconscious the next. In the cortex of the brain however, it doesn’t work exactly like that A new study by researchers at Massachusetts General Hospital and Harvard Medical School shows that brain activity gradually shifts rather than shutting down immediately.
 
Most researchers have looked at the effects of anesthesia using EEG readings. These recordings of the electrical activity in the brain do show some effects of anesthesia, but it’s not a perfect method. The study done in Boston used Macaque monkeys who had sensors implanted directly in the brain tissue and these sensors were able to show much more detail, literally down to specific neurons, than an EEG would have revealed. The monkeys were trained to perform a task that would indicate alertness and were tested for responses to tactile and auditory stimuli. The researchers looked at brain activity while they were fully awake and as they lost consciousness to show how the brain was functioning.
 
Looking at two areas in the brain, one that deals with incoming sensory information and one involved with movement, the team saw that these areas were working together in sync before the administration of Propofol. At the point where the monkeys were just beginning to lose consciousness, activity in the two areas were no longer working in tandem, but rather each area showed its own patterns. At the point of being fully asleep, there was a surge in the nerve cell activity of the area of the brain responsible for movement and a similar surge a few minutes later in the area responsible for processing sensory input. Finally when the monkeys were full anesthetized by the drug, the two areas of the brain synced up again, working much like they had before the drug was administered.
 
In an interview with Science News, the co-author of the study, Yumiko Ishizawa of Harvard Medical School and Massachusetts General Hospital expressed surprise that period between being fully awake and fully asleep had shown such different nerve cell activity. More than anything, the study showed that the effects of this drug, and likely other drugs used in anesthesia, is quite a bit more complicated. The brain, and thus the patient, doesn’t simply go from awake to asleep as if there was a switch that was flipped, but rather the process is gradual and results in specific patterns in different parts of the brain. The video below talks more about the process of anesthesia and this study of it.


Sources: Science News, Journal of Neuroscience
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 24, 2018
Neuroscience
OCT 24, 2018
Self-Restraint And Will Power Improves Weight-Loss: Scientific Evidence
Weight loss success linked with active self-control regions of the brain...
NOV 26, 2018
Neuroscience
NOV 26, 2018
Ventromedial Prefrontal Cortex Central For Imagination Mitigated Fear
Extinction; presenting fear in a neutral setting where the negative consequences are negated is one of the successful fear conditioning mechanisms...
DEC 10, 2018
Neuroscience
DEC 10, 2018
Brain's Dopamine: The Good, The Bad and The Ugly
Dopamine in the brain is an important neurotransmitter that is often attributed to pleasure chemical. But that's not all it does; research has identified the role of dopamine in fear, emotion...
DEC 17, 2018
Health & Medicine
DEC 17, 2018
Zapping the Vagus Nerve for Weight Loss Becomes Smaller
In laboratory testing, the devices helped rats shed almost 40 percent of their body weight. Results of the study were published today (Dec. 17, 2018) in the journal Nature Communications....
JAN 01, 2019
Health & Medicine
JAN 01, 2019
Growing Old With Autism
  While ASD spectrum disorder (ASD) is a major disability many people are aware of, the term was practically unheard of half a century ago, fewer chil...
JAN 08, 2019
Videos
JAN 08, 2019
How bilingualism affects your sense of time
Research shows that bilingual brains work differently than monolingual brains. Even more fascinating, studies have also shown that depending on the languag...
Loading Comments...