MAR 03, 2015 4:04 PM PST

New Target Identified in Fight Against Alzheimer's, Multiple Sclerosis

WRITTEN BY: Ilene Schneider
Highlighting a potential target in the treatment of multiple sclerosis (MS) and Alzheimer's disease, new research suggests that triggering a protein found on the surface of brain cells may help slow the progression of these and other neurological diseases.

Protein may help to treat neurological disorders

Working with mice, two research teams at Washington University School of Medicine in St. Louis independently linked the protein to the ability to clear debris from the brain. Such waste builds up both as a byproduct of daily mental activities and as a result of misdirected immune system attacks on brain cells. If too much debris is present in the brain for too long, it can contribute to neurological disease.

In one study, appearing online Feb. 26 in Cell, scientists showed that Alzheimer's brain plaques build up more slowly in mice that have a defective version of the TREM2 protein. In another, published Jan. 29 in Acta Neuropathologica, researchers showed that mice lacking the same protein had trouble cleaning up debris in the brain produced by damage to a protective coating on nerve cells. The problem is thought to occur in MS and other neurological disorders.

"We've been very interested in identifying ways to control naturally occurring mechanisms that help clean and repair the brain, and these new studies provide clear evidence that TREM2 could be just such a target," said Laura Piccio, MD, PhD assistant professor of neurology and senior author of one of the studies.

Scientists are looking for ways to activate the protein to slow or prevent damage caused by neurological disorders.

Previous studies have linked rare forms of the TREM2 gene to early-onset dementia and increased risk of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS).

Scientists knew the protein was found on brain cells called microglia, which help maintain and repair the central nervous system. The new studies are among the first to provide clear evidence that the protein plays an integral role in at least some of these processes.

In Alzheimer's disease, amyloid beta, a byproduct of brain metabolism that is normally cleared from the brain, builds up to form plaques. Researchers in the laboratories of Marco Colonna, MD, the Robert Rock Belliveau MD Professor of Pathology, and John Cirrito, PhD, associate professor of neurology, bred mice lacking the gene with mice genetically engineered to have an Alzheimer's-like condition.

First author Yaming Wang, PhD, a postdoctoral research scholar, monitored the buildup of amyloid plaques in the mice offspring as they aged and found that the absence of the gene significantly accelerated the accumulation of the plaques.

"We found that microglia cluster around amyloid plaques when TREM2 is present, presumably because the cells are getting ready to absorb the plaques and break them down," said Colonna. "When TREM2 is absent, this clustering does not occur."

In MS, misdirected immune cell attacks damage myelin, a protective coating on nerve cells, leaving myelin fragments in brain tissue. Failure to promptly remove this debris can worsen damage caused by the condition and inhibit repair mechanisms.

For the MS study, Piccio and colleagues at the John L. Trotter MS Center at Washington University School of Medicine and Barnes-Jewish Hospital gave a compound called cuprizone to mice that lacked the TREM2 gene. Cuprizone causes loss of myelin in a manner somewhat similar to that seen in people with MS.

"When we give normal mice this chemical, they can clear most of the myelin fragments from the brain," Piccio said. "But when we gave cuprizone to mice that did not have the gene and looked at their brains four, six and 12 weeks later, we could still see evidence of damaged myelin."

Motor coordination in these mice also was significantly more impaired after cuprizone exposure. This may reflect enhanced damage to brain cells resulting from the lingering presence of damaged myelin in the brain.

Colonna and his colleagues showed that TREM2 detects molecules associated with amyloid beta and with damaged neurons. They believe that the protein helps keep microglia from self-destructing as debris is cleared from the brain.

"This is a mechanism that is very common in immune cells," he explained. "When a signal activates immune cells and they start attacking an invader or working to repair an injury, they start using energy very rapidly. If the cells do not receive a second signal confirming the need for their services, this increased energy usage will kill them."

Source: Washington University School of Medicine
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
MAY 10, 2021
Plants & Animals
Sharks Can Use Earth's Magnetic Field to Navigate
MAY 10, 2021
Sharks Can Use Earth's Magnetic Field to Navigate
How do sharks make transatlantic journeys without losing their way? New research published this week in Current Biology ...
JUN 04, 2021
Neuroscience
Increased Screen Time Before Bed Linked to Poor Sleep Quality
JUN 04, 2021
Increased Screen Time Before Bed Linked to Poor Sleep Quality
Researchers from Italy have found that during the pandemic, people who increased their evening screen time also tended t ...
JUN 17, 2021
Drug Discovery & Development
FDA Approval of First New Alzheimer's Drug in Two Decades Sparks Controversy
JUN 17, 2021
FDA Approval of First New Alzheimer's Drug in Two Decades Sparks Controversy
The FDA recently approved a new drug known as Adulhelm, or aducanumab, to treat Alzheimer’s disease. The first new ...
JUN 22, 2021
Neuroscience
Virtual Reality Game Provides Pain Relief for Children
JUN 22, 2021
Virtual Reality Game Provides Pain Relief for Children
Researchers led by Ohio State University have found that smartphone-based virtual reality (VR) games can relieve pain fr ...
JUN 26, 2021
Technology
New Imaging Technique May Allow for Earlier Detection of Neurological Disorders like Alzheimers.
JUN 26, 2021
New Imaging Technique May Allow for Earlier Detection of Neurological Disorders like Alzheimers.
According to research presented at the Society of Nuclear Medicine and Molecular Imaging's 2021 Virtual Annual Meeti ...
JUL 05, 2021
Cannabis Sciences
Long Term CBD Use Linked to Less Pain, Anxiety and Depression
JUL 05, 2021
Long Term CBD Use Linked to Less Pain, Anxiety and Depression
Researchers from Canada have found that long-term use of cannabidiol (CBD) is linked to improved symptoms of pain, anxie ...
Loading Comments...