SEP 19, 2016 3:12 AM PDT

Monkeys Help Develop Brain-Machine Interface

There is theory that if you put a bunch of monkeys in a room randomly typing eventually something coherent, like a Shakespeare play, will be produced.  It’s called just that, the Infinite Monkey Theorem. As it turns out however, monkeys can learn to type and it’s not just random.
 Monkeys can learn to type
At Stanford University’s Bio-X Institute, researchers have developed technology that interfaces with the brain, reading signals that direct a cursor to move across a digital keyboard and produce text.  They used monkeys in their study and the animals were trained to copy text (passages from the New York times and Hamlet were used). Eventually they got up to 12 words per minute. Electrical engineer and professor of engineering at Stanford, Krishna Shenoy and postdoctoral fellow Paul Nuyujukian came up with the technology and their results could signal new hope for people who have difficulty communicating.
 
Currently, the most common technology for people who have disabilities that impair speech or movement, are eye tracking devices. By looking at a screen with words or letters, eye movements are detected and the words are then spoken by a computer. Most will recognize this kind of communication as the method used by Stephen Hawking, however his is a bit different. He moves certain muscles in his face, since his disability involves drooping eyelids and eye movements are hard to detect. This latest research takes the technology up a level by actually reading brain signals, rather than muscle movements.
 
It started with training the monkeys to type letters they saw on a screen. Letter by letter passages of text were typed by the animals. At the same time, brain waves were recorded with the use of strategically placed electrodes implanted in the brain to directly read signals from the part of the brain that controls hand and arm movements when using a computer mouse. Then it became about developing algorithms to decode those signals. That number crunching is what resulted in improved typing accuracy and speed over previous studies that had shown ability, but lacked speed and were often full of mistakes.
 
In a press release from Stanford Nuyujukian said, “The interface we tested is exactly what a human would use. What we had never quantified before was the typing rate that could be achieved. Our results demonstrate that this interface may have great promise for use in people. It enables a typing rate sufficient for a meaningful conversation.”
 
The results were published September 12 in the Proceedings of the IEEE. The team stressed that using the interface in humans might work differently. People are likely to type slower as they consider their thoughts and what they want to say. Also, there is the factor of distraction in humans that doesn’t exist among the monkeys in the lab environment. Another benefit of the study is that it showed the implanted electrodes can stay stable for up to four years, since the monkeys had electrodes that were used in prior research and had been in their brains without any loss of efficiency.
 
The study was conducted by Bio-X engineers in conjunction with the Brain-Machine Interface initiative of the Stanford Neurosciences Institute which has several projects ongoing in the field of brain-machine interface technology. A clinical trial of this most recent work is starting now with humans. Jaimie Henderson, a Stanford professor of neurosurgery is assisting in that trial.  The short video clip below shows how the monkeys select letters to type a passage.

Sources: Stanford, Factor Magazine, International Business Times
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 24, 2020
Neuroscience
Researchers Crowdfund $30 Million for Psychedelic Therapy for PTSD
AUG 24, 2020
Researchers Crowdfund $30 Million for Psychedelic Therapy for PTSD
In a historic feat, the Multidisciplinary Association for Psychedelic Studies (MAPS) has raised $30 million to complete ...
SEP 02, 2020
Clinical & Molecular DX
Feeling Tired? Scientists Use Brain Scans to Measure Fatigue
SEP 02, 2020
Feeling Tired? Scientists Use Brain Scans to Measure Fatigue
Yawning in the middle of the day is completely normal for people with hectic schedules. How do you know whether it&rsquo ...
SEP 03, 2020
Health & Medicine
High BMI and Waist Circumference Increase Dementia Risk
SEP 03, 2020
High BMI and Waist Circumference Increase Dementia Risk
New research from University College London (UCL) provides another link between obesity and dementia risk. The study cit ...
SEP 19, 2020
Cell & Molecular Biology
Reward and Punishment Take Similar Paths in the Mouse Brain
SEP 19, 2020
Reward and Punishment Take Similar Paths in the Mouse Brain
Scientists have determined that mice have brain cells that can help them learn to avoid bad experiences.
OCT 30, 2020
Neuroscience
Why Older People Lose Motivation to Learn
OCT 30, 2020
Why Older People Lose Motivation to Learn
Researchers from MIT have identified a brain circuit that may explain why, as people age, they tend to lose motivation t ...
NOV 01, 2020
Neuroscience
High Fat Diet Could Prevent Anorexia Deaths
NOV 01, 2020
High Fat Diet Could Prevent Anorexia Deaths
Researchers from Yale University have homed in on a specific kind of neuron that appears to play a sizable role in fatal ...
Loading Comments...