NOV 15, 2016 09:40 AM PST

Scripps Florida Scientists Pinpoint Regulator of Amphetamine Induced Motor Activity

Image Credit: Shutterstock

JUPITER, FL – November 15, 2016 – In new findings that could have an impact the development of therapies for a number of currently untreatable brain disorders such as Parkinson’s and Huntington’s diseases, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found, for the first time, that a specific signaling circuit in the brain is deeply involved in motor activity.

The study, which was led by TSRI’s Associate Professor Srinivasa Subramaniam, was published November 15 in the journal Science Signaling.

Despite many advances, the precise signaling mechanisms that regulate motor function in the striatum, that part of the brain responsible for motor activity, remain unknown. The new study identified for the first time a protein interaction network that helps control these functions by inhibiting the signaling of dopamine, a neurotransmitter involved in regulating movement.

“A pair of proteins operates through a protein-protein interaction network—what we call a 'Rhesactome'—in the striatum,” Subramaniam said. “This may have much broader implications in neurological, psychiatric and addictive disorders. Drugs that bind to either of these proteins may have therapeutic benefits for the diseases that affect this part of the brain.”

The study focused on amphetamine-induced activity affected by what is known as RasGRP1-Rhes signaling circuitry. Drugs like amphetamine, which trigger dopamine release in the striatum, enhance locomotor activity. Rhes acts as a kind of brake on the amphetamine-induced locomotion; in order for normal motor activity to occur, the RasGRP1 and other protein partners in the Rhesactome network induced by amphetamine have to block Rhes. It is the calibrated interaction of Rhes with the protein RasGRP1 that adjusts striatal control of motor functions.

In the study, the researchers succeeded in using RasGRP1 to inhibit Rhes-mediated control of striatal motor activity in animal models. Animal models that were Rhes-deficient had a much stronger active behavioral response to amphetamines. But all that changed if RasGRP1 was depleted.

“It’s a delicate and highly complex relationship,” Subramaniam said. “Imagine that you are running. This protein complex carefully controls that motor function by modulating the effect of Rhes. That’s why you need to have the double control elements of both RasGRP1 and Rhes to fine-tune those motor functions. Our study captures this dynamic complex, so that now for the first time we can biochemically visualize it at the network level.”

What remains unknown at this point is how RasGRP1 actually modulates Rhes.

“We speculate that both transcriptional and post-transcriptional mechanisms are involved,” said TSRI Staff Scientist Neelam Shahani, the first author of the study. “Considering that the Rhes protein is enhanced predominantly at synaptic locations, one intriguing possibility is that RasGRP1 regulates local translation of Rhes messenger RNA at the synapse.”

In addition to Subramaniam and Shahani, other authors of the study, “RasGRP1­ Promotes Amphetamine-Induced Motor Behavior through a Rhes Interaction Network (“Rhesactome”) in the Striatum,” are Supriya Swarnkar, Vincenzo Giovinazzo, Jenny Morgenweck, Laura M. Bohn, Catherina Scharager-Tapia, Bruce Pascal and Pablo Martinez-Acedo of TSRI; and Kshitij Khare of the University of Florida, Gainesville.

The study was supported by the National Institutes of Health (grant R01-NS087019).

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
OCT 31, 2018
Plants & Animals
OCT 31, 2018
Study Suggests Extinct Elephant Birds Were Nocturnal and Nearly Blind
Elephant birds were massive birds that went extinct a long time ago. Some estimates suggest the last of the species perished some 500 to 1,000 years ago, b...
NOV 14, 2018
Immunology
NOV 14, 2018
Stress in Youth Can Mean Depression as an Adult
A research team investigates early life stress and its relation to adult depression and anxiety...
NOV 15, 2018
Drug Discovery
NOV 15, 2018
A Subclass of Anti-Aging Compounds Serves as Alzheimer's Drug Candidates
In a publication in Trends in Pharmacological Sciences, a subclass of anti-aging compounds, called geroneuroprotectors (GNPs), have been identified in rese...
NOV 18, 2018
Neuroscience
NOV 18, 2018
How does the brain know when we are full?
Feeling full or satiation is conveyed to the brain by the gut hormones via the enteric neuronal afferents and the endocrine feedback pathways....
DEC 03, 2018
Health & Medicine
DEC 03, 2018
Hierarchical control representation in the brain, a key to creativity
Multivariate cortical surface activity (electroencephalogram, EEG) decoding paradigms have been used to investigate the hierarchical representation of action plans....
DEC 03, 2018
Neuroscience
DEC 03, 2018
Genes Involved In Dementia Identified
Genetic factors have also been recognized as a critical contributor for dementia and identifying these genes will eventually allow for gene-specific therapeutics to be developed. Although sci...
Loading Comments...