MAY 22, 2017 06:23 AM PDT

The Molecular Mechanism of Lithium in Bipolar Disorder

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), together with teams from Yokohama School of Medicine, Harvard Medical School, and UC San Diego, have documented the mechanism of how lithium works in patients diagnosed with bipolar disorder. While lithium has been the drug of choice in treating bipolar disorder, not much has been known until recently on the molecular pathways of the drug and the specifics of how it works. The new research sheds light on this area of medicine and will hopefully lead to better treatments.

Approximately 5.7 million adults in the U.S. suffer from the condition. Patients with this condition must endure paralyzing mood swings that vary from extreme depression to uncontrollable mania. While lithium works in about 1/3 of patients who take it, for others it only results in side effects which can be anything from mild weight gain, nausea, and muscle tremors to cardiac complications and birth defects. Patients often spend years trying to get just the right dosage, or going on and off the medication when side effects become too much to bear.

The study, which was recently published in Proceedings of the National Academy of Sciences (PNAS), centered around human induced pluripotent stem cells (hiPS cells) to map the pathway of lithium in the brain at a molecular level. It’s the first study to drill down to this level of detail in bipolar disorder. Going forward, the results may lead to a definitive diagnostic test for the disease. Since more is now known about the exact molecular mechanism of the disorder and how lithium acts on it, the researchers involved hope that it could be the basis for developing new drugs that can treat the disease more effectively and eliminate the side effects that are so devastating to patients.

Evan Snyder, M.D., Ph.D., professor and director of the Center for Stem Cells and Regenerative Medicine at SBP, and senior author of the study stated in a press release, "Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks. Importantly, our findings open a clear path to finding safe and effective new drugs. Equally as important, it helped give us insight into what type of mechanisms cause psychiatric problems such as these.”

Snyder said that looking at the lithium response was the key to finding an intracellular protein that was a key part of the cause of the disorder, rather than a defective gene as previously believed. Snyder explained, “We realized that studying the lithium response could be used as a 'molecular can-opener' to unravel the molecular pathway of this complex disorder, that turns out not to be caused by a defect in a gene, but rather by the posttranslational regulation (phosphorylation) of the product of a gene -- in this case, CRMP2, an intracellular protein that regulates neural networks

Researchers saw differences in hiPS cells created from patients for whom lithium was effective as opposed to patients for whom the drug did not work. It was these differences that showed the roots of bipolar disorder to be physiological and not genetic. The video below features Dr. Snyder explaining more about the study and what it could mean for patients diagnosed with bipolar disorder.

Sources: Sanford Burnham Prebys Medical Discovery InstitutePNAS, San Diego Union Tribune 

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
SEP 15, 2019
SEP 15, 2019
How to dial up or down emotional memories
Memories of traumatic experiences can resurface over and over again, causing great emotional distress. This is a hallmark symptom of psychiatric diseases such as PTSD, anxiety, and depression...
SEP 15, 2019
Cannabis Sciences
SEP 15, 2019
Growing up high: new insights into how cannabis changes the adolescent brain
During adolescence, important cognitive functions develop. Adolescence is a highly sensitive period for brain development as it represents a time when regions of the frontal cortex in charge...
SEP 15, 2019
Health & Medicine
SEP 15, 2019
Remember Joe Camel? E-cigarette cartoon ads increase the chances of vaping
Do you remember the infamous "Joe Camel" advertisements for cigarettes back in the 1980s and 90s? These ads successfully got a generation of youn...
SEP 15, 2019
Drug Discovery
SEP 15, 2019
What does MDMA Therapy Look Like?
The Multidisciplinary Association for Psychedelic Studies (MAPS) aims to create an FDA-approved standardized MDMA-assisted psychotherapy practice for PTSD ...
SEP 15, 2019
SEP 15, 2019
Making Opioids Safer
The opioid crisis results in 130 American deaths every day, and both prescribed and synthetic opioids are at the core of the epidemic.  Any other drug...
SEP 15, 2019
Cell & Molecular Biology
SEP 15, 2019
A High-fat Diet Can Trigger Changes in the Brain
We all need some fat in our diets, but eating excess amounts of unhealthy fat has been linked to poor health outcomes....
Loading Comments...