NOV 08, 2017 05:56 AM PST

Decoding The Brain: Can Your Thoughts Be Read?

Who hasn't wondered about the possibility of knowing exactly what someone else is thinking? If only we could understand what's going on in someone else's head. As it happens, some neuroscientists at Purdue University have found a way to look at the brain and decode what someone is seeing. It's not exactly mind-reading, but it's close.

Using artificial intelligence and high tech functional magnetic resonance imaging (fMRI) scans, the team at Purdue can look at the brain images of someone watching a movie and interpret from that what the person is watching. It's a brave new world in this area of neuroscience, and the methods they use could be the way of the future regarding brain function.

As with most neuroscience projects, there's more than a little math involved. A specific algorithm called a "convolutional neural network" is involved. It's the same kind of machine learning that powers facial recognition software and smartphone apps that can recognize places and objects.

Zhongming Liu is an assistant professor in Purdue University's Weldon School of Biomedical Engineering as well as the School of Electrical and Computer Engineering. While it's far more complicated than just mind-reading from MRI scans, he explained that the main idea is the how the algorithm is used, stating, "This type of network has made an enormous impact in the field of computer vision in recent years. Our technique uses the neural network to understand what you are seeing."

Convolutional neural networking has been used for a while regarding static images. It's been possible for some time to understand how the brain processes a still photo or an environment like a map of a neighborhood. What's new in the latest research, however, is the ability of the algorithm to decode what the brain sees and processes when looking at video clips, which are much more complex than still images.

The project started when the team acquired several hours of fMRI data from a study where three women were asked to watch a total of 972 video clips. The clips were of people, animals, and scenes from nature and included action scenes like a person walking.

The first part of the study involved the data being crunched so that the convolutional neural network could "learn" to predict what would happen in the brain's visual cortex while the women were watching the clips and being scanned. The researchers then flipped the equation around and applied it to the fMRI scans to see if the algorithm could decode, from the scan images, which clips the women were viewing.

Purdue doctoral student doctoral student Haiguang Wen, who was the lead author of the study explained, "I think what is a unique aspect of this work is that we are doing the decoding nearly in real time, as the subjects are watching the video. We scan the brain every two seconds, and the model rebuilds the visual experience as it occurs. This is a landmark goal of neuroscience. I think what we report in this paper moves us closer to achieving that goal. A scene with a car moving in front of a building is dissected into pieces of information by the brain: one location in the brain may represent the car; another location may represent the building. Using our technique, you may visualize the specific information represented by any brain location, and screen through all the locations in the brain's visual cortex. By doing that, you can see how the brain divides a visual scene into pieces and re-assembles the pieces into a full understanding of the visual scene."

The team at Purdue made a video to explain the project, and it's included below. Take a look at their cutting-edge project.

Sources: Purdue University, Oxford University Press, The Big Think

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 18, 2018
Cell & Molecular Biology
OCT 18, 2018
An Unexpected Role for Astrocytes
The brain starts out as a dynamic organ that is capable of many changes. That flexibility allows us to learn, adapt and grow....
DEC 09, 2018
Health & Medicine
DEC 09, 2018
Treatment for Borderline Personality Disorder: Dialectical Behavior Therapy (DBT)
  Borderline personality disorder (BPD) is defined by the "Diagnostic and Statistical Manual, 5th Edition (DSM-5), as a chronic disorder tha...
DEC 17, 2018
Health & Medicine
DEC 17, 2018
Zapping the Vagus Nerve for Weight Loss Becomes Smaller
In laboratory testing, the devices helped rats shed almost 40 percent of their body weight. Results of the study were published today (Dec. 17, 2018) in the journal Nature Communications....
DEC 19, 2018
Cannabis Sciences
DEC 19, 2018
Jui Jitsu and Marijuana: High Rollers
As a previous practitioner of Brazillian Jui Jitsu (BJJ), I can attest that it takes a lot of endurance, motivation, technique, and strength. These ar...
DEC 26, 2018
Technology
DEC 26, 2018
Advanced Computer System Based on Human Visual Learning
In a study published in the Proceedings of the National Academy of Sciences, a team of researchers have engineered an advanced computer system by basing it...
JAN 08, 2019
Health & Medicine
JAN 08, 2019
Wireless 128 channel closed loop brain stimulation device
Engineers at the University of California, Berkeley, developed a device named "WAND," that simultaneously monitors the local field potentials and delivers electrical pulses to brain...
Loading Comments...