APR 02, 2015 8:48 AM PDT

Could gut-brain connection reveal the core biology of autism?

WRITTEN BY: Will Hector
John Rodakis' son was prescribed a 10-day course of amoxicillin, one of the most frequently used antibiotics in the US, and within just 4 days of commencing the treatment, changes were observed in his autism symptoms.

"[He] began making eye contact, which he had previously avoided; his speech, which was severely delayed, began to improve markedly; he became less 'rigid' in his insistence for sameness and routine; and he also displayed an uncharacteristic level of energy, which he had historically lacked," explains Rodakis.

In an article published in Microbial Ecology in Health and Disease, Rodakis describes this unexpected turn of events and the journey of discovery he has since embarked upon, as he attempts to understand what caused his son's symptoms to change.

It became apparent to him early in his investigation that many other parents had experienced similar changes following courses of antibiotics, with some even routinely giving their autistic children antibiotics in order to improve their symptoms.

As well as these positive experiences, Rodakis also notes that some parents found their children's symptoms worsened under the influence of the medicine. "In my view, these stories are not contradictory but rather reinforce the notion that an antibiotic can create an effect in autism," writes Rodakis.

Rodakis' investigation brought him into contact with Dr. Richard Frye, head of the Autism Research Program at Arkansas Children's Hospital Research Institute. Together, in collaboration with other researchers from across the world, they decided a research trial was required, and a scientific conference was warranted.

"Careful parental observations can be crucial," Dr. Frye explains. "In science we take these observations, put them through the scientific method, and see what we find. This is what can lead to ground-breaking scientific discoveries and breakthroughs in the field."

The First International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism was held in June and it has led to a special edition of Microbial Ecology in Health and Disease being published, focusing on autism and the microbiome.

In recent years, evidence associating the microbiome - the collection of micro-organisms living on and in the human body - with autism has grown sharply.

Ellen Bolte, another parent of a child with autism spectrum disorder, had a hypothesis in 1999 that some cases of autism were affected by gut bacteria. From this hypothesis, a small clinical trial was conducted and since then, a significant body of research has been compiled.

One of the speakers at the conference, Dr. Rosa Krajmalnik-Brown, led a team of researchers at Arizona State University for a study in which children with autism were found to have less diversity in their gut bacteria than typically developing children. This link between the microbiome and autism is referred to as the "gut brain" connection.

Rodakis believes that antibiotics may be useful as a research tool and could lead to the development of future treatment methods for his son. "I was determined to better understand this phenomenon because I believed that if we could understand the biological basis of his improvements, we might gain insight into how autism works and be able to help him," he explains, adding:

"Current research is demonstrating that gut bacteria play previously undiscovered roles in health and disease throughout medicine. The evidence is very strong that they also play a role in autism. It's my hope that by studying these antibiotic-responding children, we can learn more about the core biology of autism."

(Source: James McIntosh, Medical News Today)
About the Author
  • Will Hector practices psychotherapy at Heart in Balance Counseling Center in Oakland, California. He has substantial training in Attachment Theory, Hakomi Body-Centered Psychotherapy, Psycho-Physical Therapy, and Formative Psychology. To learn more about his practice, click here: http://www.heartinbalancetherapy.com/will-hector.html
You May Also Like
OCT 03, 2021
Cell & Molecular Biology
A Tumor-Suppressor Gene Plays a Role in the Circadian Rhythm
OCT 03, 2021
A Tumor-Suppressor Gene Plays a Role in the Circadian Rhythm
Organisms follow the cycle of the day, even at the cellular level, creating an internal clock. Humans' biology will ...
OCT 12, 2021
Clinical & Molecular DX
Tiny Fragments of RNA in the Blood Signal Dementia Risk
OCT 12, 2021
Tiny Fragments of RNA in the Blood Signal Dementia Risk
Scientists have discovered a novel biomarker in the blood that acts as an early warning sign for dementia: microRNA. The ...
OCT 21, 2021
Neuroscience
Phone-based Talk Therapy Eases Arthritis-related Insomnia
OCT 21, 2021
Phone-based Talk Therapy Eases Arthritis-related Insomnia
Talk therapy practice known as cognitive behavior therapy (CBT) conducted over the phone helps older adults with arthrit ...
OCT 25, 2021
Health & Medicine
Recognizing Dementia as a Risk Factor for COVID-19
OCT 25, 2021
Recognizing Dementia as a Risk Factor for COVID-19
Dementia is a cluster of neurological symptoms characterized by an impaired ability to remember, make decisions, and per ...
OCT 26, 2021
Genetics & Genomics
In a First, Bach1 Protein Linked to Parkinson's, Revealing Potential Treatment
OCT 26, 2021
In a First, Bach1 Protein Linked to Parkinson's, Revealing Potential Treatment
One of the most common neurodegenerative disorders is Parkinson's disease, impacting an estimated 10 million people arou ...
NOV 01, 2021
Technology
A Robotic Cat Could Help People with Dementia
NOV 01, 2021
A Robotic Cat Could Help People with Dementia
Dementia is a debilitating condition. Though not formally classified as a disease, it more appropriately refers to a col ...
Loading Comments...