APR 10, 2015 12:25 PM PDT

Risk-Taking Balancing Act in the Brain

WRITTEN BY: Judy O'Rourke
Given five chances rolling a pair of dice, would you opt for an easy $10 for each roll (for $50 in hand), or take the risk of winning a cool $100 if you roll snake eyes?

Most animals (from roundworms to people) favor the more predictable option when faced with getting resources to help them survive (such as food).
This image shows a single sensory neuron in the roundworm Caenorhabditis elegans. Salk researchers showed how a neural circuit uses prior experience to modify future behaviors.
Scientists from the Salk Molecular Neurobiology Laboratory, La Jolla, Calif, have found the basis for how animals weigh learning and risk-taking behavior to secure a more predictable environment. Their findings shed light on the function of two chemical signals that are key to human behavior: dopamine, which is responsible for reward and risk-taking--and CREB, needed for learning.

"Previous research has shown that certain neurons respond to changes in light to determine variability in their environment, but that's not the only mechanism," says senior author Sreekanth Chalasani, PhD, assistant professor. "We discovered a new mechanism that evaluates environmental variability, a skill crucial to animals' survival."

The researchers, studying roundworms (Caenorhabditis elegans), traced how this new circuit employs information from the animal's senses to determine how predictable the environment is and compel the worm to go somewhere else, if necessary.

They say that the circuit, comprised of 16 of the 302 neurons in the worm's brain, probably has parallels in more intricate animal brains and might be a starting point to understanding and fixing some psychiatric or behavioral disorders.

The team found that two pairs of high-threshold neurons in this learning circuit act as gatekeepers, with one pair reacting to hefty increases of the presence of food and the other pair reacting to large decreases. When either of the neurons recognizes a sizable change in an environment, they prompt other neurons to release the neurotransmitter dopamine.

Depositing dopamine onto a brain (whether roundworm or human) ups the willingness to take risks.

"The connection between dopamine and risk is conserved across animals and is already known, but we showed mechanistically how it works," says Chalasani, who also holds the Helen McLoraine Developmental Chair in Neurobiology. "We hope this work will lead to better therapies for neurodegenerative and behavioral diseases and other disorders where dopamine signaling is irregular."

When the protein CREB occurred in larger amounts, the worms learned faster about food variability. "Normally the worms took about 30 minutes or so to explore and learn about food, but as you keep increasing the CREB protein they learn it faster," Chalasani says. "So dopamine stores the memory of what these worms learn while CREB regulates how quickly they learn."

The article "Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans," is in the April 9, 2015 issue of Neuron.

[Source: Salk Institute for Biological Studies]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
AUG 28, 2020
Genetics & Genomics
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
AUG 28, 2020
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
Even though genes that code for protein have been an intense focus of biomedical research for decades, the human genome ...
SEP 16, 2020
Immunology
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
SEP 16, 2020
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
Scientists have discovered that depressed individuals show higher levels of inflammation as well as elevated fat concent ...
SEP 08, 2020
Neuroscience
Synchronizing Brain Waves Could Help Dyslexia Effects
SEP 08, 2020
Synchronizing Brain Waves Could Help Dyslexia Effects
New research from the University of Geneva shows that adults with dyslexia can read more fluently with a non-invasive el ...
NOV 08, 2020
Neuroscience
Psychedelic DMT Improves Memory by Neurogenesis
NOV 08, 2020
Psychedelic DMT Improves Memory by Neurogenesis
Researchers from the Complutense University of Madrid in Spain have found that dimethyltryptamine (DMT), the psychoactiv ...
NOV 15, 2020
Neuroscience
Brain Chemical Noradrenaline Helps Us Adapt to Uncertainty
NOV 15, 2020
Brain Chemical Noradrenaline Helps Us Adapt to Uncertainty
Researchers from the University of Cambridge and University College London have found that a neurochemical known as nora ...
NOV 17, 2020
Genetics & Genomics
Why Mutations in RRP7 Cause a Congenital Brain Disorder
NOV 17, 2020
Why Mutations in RRP7 Cause a Congenital Brain Disorder
A large family with some members that have a rare brain disorder has helped scientists learn more about both brain devel ...
Loading Comments...