APR 13, 2015 11:48 AM PDT

Brain's Spacial Knowledge Can Develop Without Sight Input

WRITTEN BY: Will Hector
Is visual input essential to how the topographical map of the visual cortex develops in the human brain?

In new research, scientists at the Hebrew University of Jerusalem and in Germany and the USA show that the way in which the brain organizes its visual sense remains intact even in people who are blind from birth, and that at least the pattern of functional connectivity between the visual area and the topographical representation of space (up/down, left/right, etc.) can develop on its own without any actual visual experience.
TThis functional magnetic resonance imaging map shows a center periphery connectivity mass in the primary visual cortex (V1) of the congenitally blind brain.
The findings, reported in the peer-reviewed neuroscience journal Brain, dispel the nearly half-century belief that the visual cortex -- the area of the brain concerned with the sense of sight -- completely fails to develop properly in people who are blind at birth, suggesting it might not be completely correct.

"Though the 'blind brain' wiring may change greatly in the blind in its frontal language related parts, it still retains the most fundamental topographical and functional connectivity organizational principles of the visual cortex, known as 'retinotopic mapping' -- the processing of two-dimensional visual images through the eye," said co-lead researcher Amir Amedi, associate professor of medical neurobiology at the Hebrew University's Edmond and Lily Safra Center for Brain Sciences and IMRIC, the Institute for Medical Research Israel-Canada.

Operating within the Hebrew University's Faculty of Medicine, IMRIC coordinates research within the departmental areas of medical neurobiology, molecular genetics and biology, immunology and cancer research.

The researchers found that the same "mapping" divisions-of-labor present in the normally sighted brain are also present in the brains of people born blind as reflected from their resting state connectivity patterns. This fundamental organization of the visual cortex was even found in people whose eyes did not develop normally, suggesting normal eye development may not be necessary for the establishment of large-scale functional connectivity network mapping in the most fundamental visual areas like V1, the primary visual cortex.

Contrary to conventional wisdom, the latest findings reported by Prof. Amir Amedi, Dr. Ella Striem-Amit and Smadar Ovadia-Caro suggest that some key features and properties of visual cortex organization do not require visual experience to progress. The study further adds that the brain's visual cortex does not lose all of its properties even when completely deprived of vision.

"Some of the brain's connectivity maps is hardwired, possibly dependent on genetically-driven processes that do not need any external sensory information for their activation, while other process might indeed need visual input to specialize," Amedi said. The visual brain resting-state connectivity networks separated to up vs. down, right vs. left, front vs. back are also present in the brain of those born blind, according the study.

Follow Will Hector: @WriteCompassion

(Sources: The Hebrew University of Jeruselum; Science Daily)
About the Author
  • Will Hector practices psychotherapy at Heart in Balance Counseling Center in Oakland, California. He has substantial training in Attachment Theory, Hakomi Body-Centered Psychotherapy, Psycho-Physical Therapy, and Formative Psychology. To learn more about his practice, click here: http://www.heartinbalancetherapy.com/will-hector.html
You May Also Like
AUG 30, 2020
Cell & Molecular Biology
Transfer RNA Mutations May Be an Overlooked Cause of Disease
AUG 30, 2020
Transfer RNA Mutations May Be an Overlooked Cause of Disease
Our bodies need vast numbers of proteins to function. Dysfunctional proteins, which can be caused by errors in the genes ...
SEP 14, 2020
Clinical & Molecular DX
Peek into the Inner Workings of the Spinal Cord
SEP 14, 2020
Peek into the Inner Workings of the Spinal Cord
Scientists have established a state-of-the-art method for observing and analyzing the complex flurry of neurological act ...
SEP 08, 2020
Neuroscience
Synchronizing Brain Waves Could Help Dyslexia Effects
SEP 08, 2020
Synchronizing Brain Waves Could Help Dyslexia Effects
New research from the University of Geneva shows that adults with dyslexia can read more fluently with a non-invasive el ...
OCT 05, 2020
Genetics & Genomics
A Rare Form of Dementia is Discovered
OCT 05, 2020
A Rare Form of Dementia is Discovered
There are different types of dementia, a term for a loss of cognitive function, including Alzheimer's disease and Le ...
OCT 20, 2020
Neuroscience
Negative Behavior Triggers Same Brain Patterns as Bad Smells
OCT 20, 2020
Negative Behavior Triggers Same Brain Patterns as Bad Smells
Researchers from the University of Geneva have found that witnessing negative behaviors triggers similar neural response ...
OCT 07, 2020
Neuroscience
Biocompatible Gel Restores Sciatic Nerve Function in Rats
OCT 07, 2020
Biocompatible Gel Restores Sciatic Nerve Function in Rats
Video: Explains poly(lactic-co-glycolic acid), a hydrogel biopolymer that is a similar concept to the new hydrogel built ...
Loading Comments...