JUL 03, 2015 12:37 PM PDT

Let's Do The Time Warp Again!

Supernova. Pulsar. Black hole. All of these are celestial events that astronomers study, hoping to find clues about how the universe began. A supernova is the death of a star and that sets in motion an entire process. First the star has to run out of fuel. When there's nothing left to feed it, no gas, debris or light waves, it just explodes. The explosion is so big that the light it emits, powered by gas and full of star debris, is often brighter than the original star was, lighting up the whole galaxy for quite some time after the initial explosion. What's left? Here are a few possibilities.
An artist's rendition of a binary pulsar system
A neutron star: A neutron star is very small, relatively speaking. Most don't have a radius any bigger than about 7 miles, but the cool thing about them is their incredible density. While small in size, they can actually have a mass that is close to two times that of our Sun.
A black hole: A black hole is really about the math. A complex math formula is calculated in terms of its gravitational pull and how much velocity it has. When a star explodes, the sheer power of that event can create a vortex that spins at a high speed, creating a pull on anything around it.

A pulsar: These are awesome. A pulsar is the magnetic field that surrounds a neutron star and some of them are so powerful they can actually disrupt the spacetime continuum. Yes, that spacetime thing is real. Sometimes referred to as the "fabric of spacetime" or simply spacetime, it's a concept where a mathematical model is used to weave together the description of time and space. It's how physicists talk about the way space and time interact.

With all of that going on, imagine what it must be like to have witnessed part of this process. Joeri van Leeuwen, an astrophysicist at the Netherlands Institute for Radio Astronomy, and University of Amsterdam, led a team that sort of did see it, in a way. They were able to collect data from binary pulsar system J1906 and use that data to actually measure a time warp. Yes, a real time warp. As the Doctor would say, "A big ball of wibbly-wobbly, timey wimey stuff!"

25,000 light-years away from earth J1906 died out and disappeared from view. It's unusual because it's a binary pulsar system, essentially a two-fer. When a supernova happens, it's rare that a star will be able to hang on to a companion, but J1906 is comprised of two super dense stars. One pulsar spins, much like the Earth does every 24 hours, and it also orbits its companion. The radio waves thrown off by both stars sweep across space in a way described by astronomers as much like the beam from lighthouse sweeps across the ocean.

According to the team's research it was actually swallowed by a warp of the spacetime fabric
In an interview with Space.com, study co-author Duncan Lorimer of West Virginia University explained, "The companion is so massive that it creates a huge warp in the fabric of spacetime, like a bowling ball on a thin sheet. Its spin axis shifts ever so slightly, and it precesses, or wobbles like a spinning top. This wobbling is known as "geodetic precession."

Once the team was able to quantify the change in the axis of the pulsar's spin, their mission became measuring the mass of the two pulsars before they disappeared into the warp.

The study has been accepted for publication in the Astrophysical Journal. Check out the video below for an explanation from NASA experts on what exactly a pulsar is.
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 28, 2018
Space & Astronomy
OCT 28, 2018
How NASA's Apollo Program Changed Spaceflight Forever
NASA’s Apollo program trekked carefully along the dangerous line separating risk from reward, and as it would seem, the American space agency may hav...
NOV 13, 2018
Space & Astronomy
NOV 13, 2018
Was Pluto Once Home to Ancient Glaciers?
When NASA’s New Horizons probe conducted its historic fly-by of Pluto in 2015, the American space agency received some of the sharpest photographs de...
NOV 28, 2018
Space & Astronomy
NOV 28, 2018
NASA Lucy Mission to Visit Jupiter's Trojan Asteroids is Poised to Launch in 2021
Why are we here, and where did we come from? Humankind has been asking these questions since the dawn of time, but legitimate answers appear to be highly e...
DEC 04, 2018
Space & Astronomy
DEC 04, 2018
NASA's OSIRIS-REx Probe Arrives Safely at Asteroid Bennu
Following a two-year journey through our solar system, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (...
DEC 21, 2018
Chemistry & Physics
DEC 21, 2018
"Dark Fluid" Theory Unifies Dark Matter and Dark Energy
The current model of the universe hypothesized that the world we dwell in only contain 5% ordinary (tangible, visible) matter; the rest is made of  25...
JAN 08, 2019
Space & Astronomy
JAN 08, 2019
NASA's TESS Spacecraft Detects its Third Exoplanet
NASA may have said goodbye to its Kepler Space Telescope at the end of October last year, but the American space agency continues its search for distant ex...
Loading Comments...