SEP 09, 2015 09:45 AM PDT
Hedgehog: Perfectly Designed For Microgravity Exploration, Part II
WRITTEN BY: Andrew J. Dunlop
2 19 2677
Part I of this article described a new kind of cube-shaped probe that NASA’s JPL and Stanford University are designing specifically for exploring in microgravity conditions called the Hedgehog. It also explained that a standard probe design would be almost useless in this sort environment. So instead of using external wheels, like the Mars rovers, Hedgehog uses internal flywheels to move, typically taking large hops toward an area of interest, and then smaller tumbles as it gets closer to its target.
An early conceptual image for Stanford's Hedgehog design
There’s a third kind of maneuver Hedgehog can perform if it gets itself into a tricky situation. Its designers refer to as a "tornado" maneuver. In it, the cube aggressively spins and launches itself off the ground. The “tornado” maneuver could be particularly useful in the event that Hedgehog found itself in a sandy sinkhole it needed to escape from or some other situation in which the robot would otherwise be stuck. If the Hedgehog, for example, found itself in the kind of situation the Philae Lander found itself stuck in, Hedgehog could have simply performed a “tornado” maneuver, and carried on with its mission.

NASA’s JPL and Stanford each have their own design for the Hedgehog. The current JPL Hedgehog prototype has eight external spikes and three flywheels inside it. The basic probe weighs about 11 pounds (5 kilograms) by itself, but its designers  say that, outfitted with instruments such as cameras and spectrometers, it could weigh more than 20 pounds (9 kilograms). Though this may seem like a lot of weight to move around just with internal flywheels, keep in mind that Hedgehog will be operating in microgravity, where a human being would weigh about as much a s paperclip weighs here on Earth. The Stanford prototype is slightly smaller and lighter, and it has shorter spikes.

Both prototypes maneuver by spinning and stopping three internal flywheels, but the braking mechanisms differ between the two prototypes. While JPL's version uses disc brakes, Stanford's prototype uses friction belts to stop the flywheels abruptly.

Marco Pavone, leader of the Stanford team explains, ”By controlling how you brake the flywheels, you can adjust Hedgehog's hopping angle. The idea was to test the two braking systems and understand their advantages and disadvantages.”

“The geometry of the Hedgehog spikes has a great influence on its hopping trajectory,” says Benjamin Hockman, lead engineer on the Stanford team. “We have experimented with several spike configurations and found that a cube shape provides the best hopping performance. The cube structure is also easier to manufacture and package within a spacecraft.”

Because Hedgehog will be operating in deep space, where sending each instruction and then waiting for telemetry to make it back to Earth could take significant periods of time, researchers are working on giving Hedgehog some autonomy, trying to increase the number of tasks the robots can do by themselves, without instructions from Earth. The idea is that Hedgehog would work in concert with an orbiting mothership, which would relay signals to and from the robot. The mothership would also help the Hedgehogs determine their positions and navigate.

Along with enabling it to operate in microgravity, the new design architecture would make the construction cost of a Hedgehog relatively low, especially compared to a traditional rover. Also, with lower cost and smaller payloads, several Hedgehogs could be packaged together for flight. So instead of sinking all of the resources for a mission into one rover, the mothership could release many robots at once or in stages, letting them spread out to cover much more area than a single, much more expensive rover could alone.


Source: Phys.org
About the Author
  • Andrew J. Dunlop lives and writes in a little town near Boston. He's interested in space, the Earth, and the way that humans and other species live on it.
You May Also Like
FEB 19, 2018
Space & Astronomy
FEB 19, 2018
Astrophotographer Captures Footage of Elon Musk's Tesla Roadster in Space
While SpaceX set a precedent for space travel when they launched the Falcon Heavy rocket for the first time, we can’t forget about the rocket’s
APR 02, 2018
Space & Astronomy
APR 02, 2018
SpaceX Delivers Fresh Supplies to the International Space Station
Commercial space company SpaceX completed yet another special delivery to the astronauts inhabiting the International Space Station on Monday. The company&
APR 22, 2018
Space & Astronomy
APR 22, 2018
Elon Musk Wants to Use 'Giant Party Balloons' to Land Falcon 9 Second Stages
SpaceX is one of the most recognized names in space travel because the company practically pioneered the reusable rocket industry. Nevertheless, the Falcon
MAY 29, 2018
Space & Astronomy
MAY 29, 2018
SpaceX's Latest Falcon 9 Launch Melted a Photographer's Camera
The Falcon 9 rocket that SpaceX launched last Tuesday became somewhat famous; not just for sending NASA’s GRACE-FO mission into space, but also becau
MAY 30, 2018
Infographics
MAY 30, 2018
How Big Are We in Relation to Space?
When you hear the phrase "life-sized," what comes to mind? Most people think of things comparatively-sized to themselves, but the observable univ
JUN 20, 2018
Space & Astronomy
JUN 20, 2018
New Report Outlines How NASA Will Prepare for Potential Near-Earth Object Collisions
NASA juggles a bevy of space-related responsibilities, such as exploring the solar system and studying the most distant reaches of the universe, but one of
Loading Comments...