OCT 06, 2017 08:13 AM PDT

Breakthrough Diffuser Technology Could Revolutionize Ground-Based Exoplanet Research

One of the reasons we have observatories floating around in space, like the Hubble Space Telescope, is that ground-based telescopes aren’t as capable at studying other worlds. The Earth’s atmosphere gets in the way, distorting what we see and causing inconsistencies in measurements that make observations more challenging.

Space telescopes circumvent this problem by residing in outer space, where there's no atmosphere to distort anything. Space telescopes, take advantage of this to spy on distant exoplanets and help astronomers learn more about them.

But now, an incredible breakthrough developed by Pennsylvania State University researchers promises to make ground-based observatories just as capable of exploring exoplanets as space-based observatories.

Image Credit: left: RPC Photonics; right: Gudmundur Stefansson via Penn State

Published in The Astrophysical Journal, the researchers describe an entirely new beam-shaping diffuser system for ground-based observatories that filters out the atmospheric distortions that disrupt observations.

What’s more, the researchers say, is that the attachment is shockingly cost-efficient and capable of achieving results similar in quality to photometric observations performed by space-based observatories.

“This inexpensive technology delivers high photometric precision in observations of exoplanets as they transit -- cross in front of -- the bright stars that they orbit,” said study lead author Gudmundur Stefansson from Pennsylvania State University.

“This technology is especially relevant considering the impending launch of NASA’s Transiting Exoplanet Survey Satellite (TESS) early in 2018. It is up to ground-based facilities to rapidly and reliably follow-up on candidate planets that are identified by TESS.”

What the attachment does is enable ground-based observatories to take light measurements from distant exoplanets as they transit their host star. Data of this nature helps astronomers determine a world’s chemical composition, habitability characteristics, and size from afar.

Related: Could aliens observe the Earth in the same way that we observe other exoplanets?

The diffuser shapes the light output in such a way that the Earth’s atmosphere can’t drown out a clear signal. In turn, it’s almost as if the Earth’s atmosphere isn’t even there to disrupt anything when making observations from the ground.

The diffusers can be tailored for a wide range of different ground-based observatories, potentially opening new doors to diffuser-assisted photometry and advancing exoplanet research exponentially.

So far, the researchers have already tested the technology with the Hale telescope at Palomar Observatory in California, the 0.6m telescope at Davey Lab Observatory at Pennsylvania State University, and the ARC 3.5m Telescope at Apache Point Observatory in New Mexico.

Excitingly, the diffusers upheld steady sizes, shapes, and intensities of everything observed, which is imperative when you're trying to capture precise measurements. Without the diffusers, flashing and strobing were present from turbulences in Earth's atmosphere, which aren't ideal for making accurate measurements:

Related: China's new FAST radio telescope is now fully operational

As it would seem, the new technology shows a lot of promise. Within just a few more years, it would be possible to retrofit the diffusers to many of the world’s ground-based observatories, making exoplanet observations more readily accessible to astronomers.

And this, friends, is why science is awesome.

Source: Pennsylvania State University

About the Author
  • Fascinated by scientific discoveries and media, Anthony found his way here at LabRoots, where he would be able to dabble in the two. Anthony is a technology junkie that has vast experience in computer systems and automobile mechanics, as opposite as those sound.
You May Also Like
JUL 31, 2018
Chemistry & Physics
JUL 31, 2018
Where Does Earth Get Its Water
We live on Earth, the so-called blue planet. Without water, Earth would not be "blue" at all, not to mention the life that is bred on the planet...
SEP 03, 2018
Space & Astronomy
SEP 03, 2018
The Moon is Close, So Why Don't We Colonize it Instead of Mars?
If you’ve been paying any attention to NASA and SpaceX lately, then you might’ve caught wind about their mutual interest in colonizing Mars wit...
OCT 15, 2018
Space & Astronomy
OCT 15, 2018
NASA's Chandra X-ray Observatory is Back Up and Running
NASA’s Chandra X-ray Observatory was recently kicked into safe mode following a mysterious anomaly. Spacecraft engineers have been working around the...
OCT 29, 2018
Space & Astronomy
OCT 29, 2018
Here's How NASA Tests Martian Parachutes
NASA uses parachute systems throughout the solar system to ensure spacecraft land safely on other planetary bodies. One of the most prominent examples is M...
NOV 04, 2018
Space & Astronomy
NOV 04, 2018
These Planets Have More Extreme Weather Than Earth
You might think that the weather can get nasty here on Earth, but it pales in comparison to the weather on other planets in the solar system. The weather c...
NOV 05, 2018
Space & Astronomy
NOV 05, 2018
The Mystery Behind Oumuamua Continues...
Last year, Oumuamua became the first-known interstellar object to be identified by astronomers as it passed through our solar system. At first, astronomers...
Loading Comments...