APR 21, 2015 10:12 PM PDT

Astronomers May Have Found Evidence Of Binary Black Holes

WRITTEN BY: Andrew J. Dunlop
Scientests may have identified and observed evidence a new type of celestial body: a binary black hole. Suvi Gezari, an assistant professor of astronomy at the University of Maryland and a co-author of a new study in the April 14, 2015, in the Astrophysical Journal Letters entitled A PERIODICALLY VARYING LUMINOUS QUASAR AT z = 2 FROM THE PAN-STARRS1 MEDIUM DEEP SURVEY: A CANDIDATE SUPERMASSIVE BLACK HOLE BINARY IN THE GRAVITATIONAL WAVE-DRIVEN REGIME says, "We believe we have observed two supermassive black holes in closer proximity than ever before. ... This pair of black holes may be so close together that they are emitting gravitational waves, which were predicted by Einstein's theory of general relativity."

An artist's conception of the emissions from two super-massive black holes

How does this sort of phenomenon occur? First, some important facts: in case you didn't know, scientists are fairly certain that most galaxies have super-massive black holes at the center of them. And sometimes, over the course of billions of years, some galaxies merge. In the final stages of these mergers, scientists have theorized that the black holes at the core of each galaxy come into such close proximity that they begin to orbit one another to form a "binary" black hole.

What does this mean? Usually, as black holes draw in and swallow matter, the matter heats up, causing it to emit electromagnetic energy and intense light. These phenomena are called quasars. Gezari and her team's insight was that when two black holes orbit one another as a binary, instead of absorbing matter at a constant rate, the way a single black hole would, they should absorb it cyclically, as they orbit one another. This should cause them to brighten and dim in a regular pattern. Seeking this phenomenon, Gezari and her team used the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) Medium Deep Survey to conduct a systematic search for these variable quasars. Over the course of four years, the team observed the same patch of sky once every three days and collected hundreds of data points for each object. And finally, they found what they were looking for: quasar PSO J334.2028+01.4075. It is a black hole of almost 10 billion solar masses which, unlike most quasars, emits a regular optical signal that repeats every 542 days. This is unusual, as most quasars give off an irregular signal.

Once they found this one quasar with a regular signal, the team decided to look for more. They examined additional data, including photometric data from the Catalina Real-Time Transient Survey and spectroscopic data from the FIRST Bright Quasar Survey. "The discovery of a compact binary candidate supermassive black hole system like PSO J334.2028+01.4075," says Tingting Liu, a UMD astronomy graduate student, and the paper's first author, "which appears to be at such close orbital separation, adds to our limited knowledge of the end stages of the merger between supermassive black holes."

Now that the team has found such tantalizing data, they plan to continue searching for new quasars with regular emissions. Starting in 2023, they may get access to the Large Synoptic Survey Telescope. This would allow the team to survey a much larger area, potentially locating thousands of merging supermassive black holes. "These telescopes allow us to watch a movie of how these systems evolve," Liu says. "What's really cool is that we may be able to watch the orbital separation of these supermassive black holes get smaller and smaller until they merge."


(Source: Phys.org)
About the Author
  • Andrew J. Dunlop lives and writes in a little town near Boston. He's interested in space, the Earth, and the way that humans and other species live on it.
You May Also Like
APR 07, 2020
Space & Astronomy
Here's The Reason Why Space is Black
APR 07, 2020
Here's The Reason Why Space is Black
Anyone who can tilt their head up enough to glance at the night sky would be able to tell you that outer space looks bla ...
MAY 03, 2020
Space & Astronomy
How the Hubble Space Telescope Transformed Astronomy
MAY 03, 2020
How the Hubble Space Telescope Transformed Astronomy
The Hubble Space Telescope has officially spent three decades in outer space, making it one of the most renowned space o ...
MAY 10, 2020
Space & Astronomy
What Exactly Are Star Clusters?
MAY 10, 2020
What Exactly Are Star Clusters?
When you think of stellar systems, you might be inclined to think of a system like our own with just one star, or perhap ...
MAY 24, 2020
Space & Astronomy
Here's Why SpaceX is Using Heavy Stainless Steel to Make Starship
MAY 24, 2020
Here's Why SpaceX is Using Heavy Stainless Steel to Make Starship
SpaceX is perhaps best known for its reusable Falcon 9 rocket, the same variety that will be lofting astronauts into out ...
JUN 14, 2020
Space & Astronomy
SpaceX Launches First Rideshare Mission with Great Success
JUN 14, 2020
SpaceX Launches First Rideshare Mission with Great Success
If you’ve been following SpaceX, then you’d know that the commercial space company has been launching quite ...
JUN 26, 2020
Space & Astronomy
Astrophysicists Find Evidence of Nearby Planet that May Sustain Life
JUN 26, 2020
Astrophysicists Find Evidence of Nearby Planet that May Sustain Life
Researchers have found that a nearby red dwarf star, known as Gliese 887, may host three planets, one of which could sus ...
Loading Comments...