JUL 25, 2018 01:13 PM PDT

3D Model of The Human Heart Ventricle

WRITTEN BY: Nouran Amin

This tissue-engineering ventricle, made from neonatal rat ventricular myocyte tissue, is spontaneously contracting, sutured and attached to a catheter. Credit: Luke MacQueen/Disease Biophysics Group/Harvard SEAS

In a study published in Nature Biomedical Engineering, scientists of Harvard University, in collaboration between SEAS, Wyss, Boston Children's Hospital and the Harvard Stem Cell Institute (HSCI), bioengineered a three-dimensional model of a human left heart ventricle. The model may serve a great use to study diseases, test drugs, and design patient-specific treatments for heart conditions such as arrhythmia. "Our group has spent a decade plus working up to the goal of building a whole heart and this is an important step towards that goal," explains Kit Parker, senior author of the study and the Tarr Family Professor of Bioengineering and Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences. "The applications, from regenerative cardiovascular medicine to its use as an in vitro model for drug discovery, are wide and varied."

The bioengineered model uses a nanofiber scaffold tissue that is seeded with human heart cells. Acting as a 3D template, the scaffold guides the heart cells and their assembly into ventricle chambers, beating in-vitro. This gives researchers the ability to study heart function by utilizing many of the same tools used in the clinic, such as ultrasound and pressure-volume loops. "The long-term objective of this project is to replace or supplement animal models with human models and especially patient-specific human models," explains Luke MacQueen, first author of the study and postdoctoral fellow at SEAS and Wyss. "In the future, patient stem cells could be collected and used to build tissue models that replicate some of the features of their whole organ."

This three-dimensional model of a heart ventricle was engineered with a nanofiber scaffold seeded with heart cells. (Luke MacQueen and Michael Rosnach/Harvard University)

"An exciting door is opened to make more physiological models of actual patient diseases," said William Pu, the Director of Basic and Translational Cardiovascular Research at Boston Children's Hospital, a Professor of Pediatrics at Harvard Medical School, Principal Faculty member of HSCI and co-author of the paper. "Those models share not only the patient mutations but all of the genetic background of the patient."

To design the ventricle, investigators combined a biodegradable polyester and gelatin fibers that were initially collected on a bullet-shaped rotating collector. When the collector spins, all the fibers assemble at the same direction. "It is important to recapitulate the structure of the natural muscle to obtain ventricles that function like their natural counterparts," said MacQueen. "When the fibers are aligned, the cells will be aligned, which means they will conduct and contract the way that native cells do." However, to understand the ventricle over long periods of time, the researchers worked to build a self-contained bioreactor that holds separate chambers for optional valve inserts and additional access ports for inserting catheters and ventricular assist capabilities. Now, the researchers aim to utilize the model for patient-derived, pre-differentiated stem cells to seed ventricles, allowing for the high-throughput production of the tissue. "We started by learning how to build cardiac myocytes, then cardiac tissues, then muscular pumps in the form of marine organism mimics, and now a ventricle," explains Parker. "Along the way we have elucidated some of the fundamental design laws of muscular pumps and developed ideas about how to fix the heart when these laws are broken by disease. We have a long way to go to build a four-chamber heart but our progress is accelerating."

Source: Harvard John A. Paulson School of Engineering and Applied Sciences, Nature Biomedical Engineering

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
OCT 16, 2019
Microbiology
OCT 16, 2019
Developing a Framework for Microbiome Research
Scientists and clinicians are beginning to recognize the power of the microbiome - the microbes that we carry in and on our bodies....
OCT 16, 2019
Technology
OCT 16, 2019
Artificial Muscle for Soft Robotics
Imagine wearing a flower brooch that blooms in front of your eyes? Well, the ultrathin, artificial muscle used for soft robotics was recently developed by ...
OCT 16, 2019
Technology
OCT 16, 2019
GymCam Can Track Exercise Effectively Than Wearable Sensors
Gadgets for fitness, in particular wearable sensors, have motivated how we exercise but may not always capture all exercises equally—as recent resear...
OCT 16, 2019
Technology
OCT 16, 2019
Electrical Technology To Treat Baldness?
Hair loss still remains a fear among most men. However, reversing baldness may someday be simple as wearing a hat. Now, researchers at the University of Wi...
OCT 16, 2019
Drug Discovery & Development
OCT 16, 2019
AI Exponentially Accelerates Drug Development
Research and development for new drugs is both an expensive and lengthy process, often lasting years, if not decades. With the development of artificial in...
OCT 16, 2019
Space & Astronomy
OCT 16, 2019
How Large Solar Storms Can Impact Earth's Power Grid
The Sun is a powerful ball of energy, and with that in mind, it should come as no surprise to anyone that it can sometimes become unstable. Over time, the...
Loading Comments...