DEC 22, 2018 1:34 PM PST

A Dynamic DNA Origami Technique

WRITTEN BY: Nouran Amin

It was not a while back ago when researchers developed a unique technique known as ‘DNA origami’ to produce tiles that could be self-assembled someday into larger nanostructures carrying predesigned patterns or ‘images’. However, their existed a limitation with that technique—once the image was made, it cannot be changed. Now, in a study published in Nature Communications, scientists at Caltech were ready to overcome this hurdle by developing new dynamic tile allowing for the re-shaping of already built DNA structures. The technique was tested on building smiley faces using DNA and even an old-fashioned game of tic-tac-toe.

An artist's rendering of a game of tic-tac-toe played with DNA tiles

Credit: CalTech via Science Daily

"We developed a mechanism to program the dynamic interactions between complex DNA nanostructures," says Lulu Qian, an assistant professor of bioengineering at CalTech who originally pioneered the technique now known as DNA origami. "Using this mechanism, we created the world's smallest game board for playing tic-tac-toe, where every move involves molecular self-reconfiguration for swapping in and out hundreds of DNA strands at once."

The new technology allows for displacement abilities in self-assembling tiles—it follows the most basic principles of strand displacement on the DNA level but at a larger scale between DNA origami structures. Such development can help researchers understand the behavior and dynamic interactions between different structures of DNA. Ultimately, the purpose of the research study is to use the technology for the development of nanomachines that can hold the capability of being modified or repaired even after being built.

Learn more: 

"When you get a flat tire, you will likely just replace it instead of buying a new car. Such a manual repair is not possible for nanoscale machines," says Qian. "But with this tile displacement process we discovered, it becomes possible to replace and upgrade multiple parts of engineered nanoscale machines to make them more efficient and sophisticated."

Source: Nature Communications, CalTech, Science Daily

 

About the Author
  • Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
NOV 14, 2020
Cannabis Sciences
New Genetic Test Identifies Cannabis THC Levels from Seeds
NOV 14, 2020
New Genetic Test Identifies Cannabis THC Levels from Seeds
Researchers from the University of Minnesota have developed a genetic test that can predict how much cannabidiol (CBD) o ...
NOV 20, 2020
Technology
'Motorized Sensors' for Disease Detection
NOV 20, 2020
'Motorized Sensors' for Disease Detection
What would likely increase the survival of a person with a deadly disease? Early detection—although depending on t ...
DEC 08, 2020
Genetics & Genomics
Advancing Genetic Sequencing with Better Computational Tools
DEC 08, 2020
Advancing Genetic Sequencing with Better Computational Tools
The many advances that have propelled the field of genetics forward have taken a tremendous amount of work in different ...
DEC 24, 2020
Technology
Computational Tool Advances Cell Imaging
DEC 24, 2020
Computational Tool Advances Cell Imaging
Researchers at City University of Hong Kong (CityU) have developed a novel computational tool that can construct three-d ...
JAN 05, 2021
Technology
Nanoparticle Technology Improves Therapeutic Delivery to the Brain
JAN 05, 2021
Nanoparticle Technology Improves Therapeutic Delivery to the Brain
For a while, researchers have discovered key mechanisms involved in leading to neurodegenerative diseases. However, desp ...
MAR 23, 2021
Technology
Has COVD-19 Made Us Nicer To Machines?
MAR 23, 2021
Has COVD-19 Made Us Nicer To Machines?
Has COVID-19 made us nicer to machines? Research shows that individuals affected by the COVID-19 pandemic have shown mor ...
Loading Comments...