DEC 26, 2018 09:45 PM PST

Development of a Safe and Wearable Biosensor

WRITTEN BY: Nouran Amin

Researchers at Harvard University have developed a non-toxic wearable sensor consisting of a silicon-rubber that attaches to the hand and capable of mearing the force of grasp and motion. The sensor includes a non-toxic novel element consisting of a highly conductive liquid solution. "We have developed a new type of conductive liquid that is no more dangerous than a small drop of salt water," says Siyi Xu, a graduate student and first author of the study. "It is four times more conductive than previous biocompatible solutions, leading to cleaner, less noisy data."

The solution is composed from potassium iodide and glycerol which make it highly stable and conductive for sensing. "Previous biocompatible soft sensors have been made using sodium chloride-glycerol solutions but these solutions have low conductivities, which makes the sensor data very noisy, and it also takes about 10 hours to prepare," explains Xu. "We've shortened that down to about 20 minutes and get very clean data."

Although the sensor was tested only on adult hands, the sensor is appropriate for advancing the therapeutic process of children with developmental disabilities. "We often see that children who are born early or who have been diagnosed with early developmental disorders have highly sensitive skin," says co-author, Eugene Goldfield. "By sticking to the top of the finger, this device gives accurate information while getting around the sensitively of the child's hand."

This biocompatible sensor is made from a non-toxic, highly conductive liquid solution that could be used in diagnostics, therapeutics, human-computer interfaces, and virtual reality. (Image courtesy of Siyi Xu, Daniel M. Vogt, and Andreas W. Rousing/Harvard SEAS)

Researchers are hopeful to scale their sensor down and test its efficacy on children—which can be critical in the diagnosis of neuromotor and cognitive development disabilities. "Early diagnosis is the name of the game when it comes to treating these developmental disabilities and this wearable sensor can give us a lot of advantages not currently available," said Goldfield.

Results of the study were published in Advanced Functional Materials.

Source: Science Daily

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 16, 2018
Technology
NOV 16, 2018
Novel 'Cellphone' Technology Detects HIV
Human immunodeficiency virus 1 (HIV), weakens the immune system by attacking healthy cells. Currently, the management of HIV remains a major global health ...
DEC 02, 2018
Space & Astronomy
DEC 02, 2018
NASA is Learning More About InSight's Landing Site Post-Landing
Following a six-month journey through space, NASA’s InSight spacecraft made a safe-and-sound landing on Mars’ barren surface last week. Comment...
DEC 04, 2018
Space & Astronomy
DEC 04, 2018
Learn How NASA's Apollo 12 Mission Escaped Double Lightning Strikes
When NASA’s Apollo 12 mission was preparing to launch on November 14th, 1969, ominous storm clouds began swarming the launch pad. Regardless, weather...
DEC 11, 2018
Cancer
DEC 11, 2018
Biosensors developed that can detect cancer's metastatic ability
Researchers in University of California San Diego School of Medicine have developed a biosensor that can detect whether a cancer cell will spread in the future or not, which will help in deve...
JAN 06, 2019
Technology
JAN 06, 2019
Learn How the Air Force Refuels Fighter Jets in Mid-Air
While most airplanes get a fresh tank of gas before ever leaving the ground, some get refueled in mid-air. The United States Air Force frequently performs...
JAN 16, 2019
Microbiology
JAN 16, 2019
Identifying Microbes That can Generate Electricity
Some microbes might be hugely beneficial to humans, such as in the production of energy and biofuels....
Loading Comments...