DEC 26, 2018 8:26 PM PST

New Blood Pressure Target

WRITTEN BY: Nouran Amin

According to a study published in eLife, researchers concluded that a protein channel may serve as an effective target for blood pressure regulation. Targeting the channel in mice was found to reduce blood pressure. The study sheds new light on developing new drugs for the treatment of high blood pressure, a condition that serves as the leading cause of heart attack and stroke.

Learn more about blood pressure:

In general, blood pressure is influenced by muscles cells that line the walls of the arteries. These muscle cells include proteins in their surface called Transient Receptor Potential (TRP) channels which regulate the movement of sodium and calcium ions. The role of TRP in high blood pressure still remains unclear, however, 13 different TRP channels were confirmed to be present on the muscle cells lining the arteries.

"The contribution of TRP channels to normal blood pressure and to changes in blood pressure are unclear, and we don't know whether the different channel types in different organs are controlled in a similar way," states senior author of the study Jonathan Jaggar. "We chose to study a TRP channel called PKD2 because patients with genetic mutations in this protein have high blood pressure and previous research has shown conflicting results regarding its functions in arterial muscle cells."

Image Retrieved From Unsplash.com

The targeting of PKD2 in mice was found to lower blood pressure than normal mice. "Our results indicate that stimuli which activate PKD2 channels are blood vessel specific, showing that there is not a singular mechanism regulating muscle cell contractility in all arteries," concludes Jaggar. "Our demonstration that muscle cell PKD2 channels regulate blood pressure is a step forward to better understanding the importance of this ion channel target in normal cardiovascular physiology, and as a potential drug target for cardiovascular disease."

Source: eLife

 

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
SEP 30, 2020
Cancer
Chemokines Could be the Key in Controlling Glioma Stem Cells
SEP 30, 2020
Chemokines Could be the Key in Controlling Glioma Stem Cells
The transformation of a healthy cell into a cancerous one often comes with a slew of cellular signaling changes.  T ...
OCT 22, 2020
Neuroscience
Placebos Impact Brain Patterns for Emotional Processing
OCT 22, 2020
Placebos Impact Brain Patterns for Emotional Processing
Researchers from Michigan State University have found that placebos reduce markers of emotional distress- even when the ...
NOV 04, 2020
Cancer
Building a New Chemotherapy Drug
NOV 04, 2020
Building a New Chemotherapy Drug
For decades, modern medicine has relied on chemists’ work to produce compounds that could one day be used as a dru ...
NOV 11, 2020
Cancer
A New CDK Inhibitor Could Help with Unresponsive Liver Cancer
NOV 11, 2020
A New CDK Inhibitor Could Help with Unresponsive Liver Cancer
Amongst the most common targets of anti-cancer drugs are small regulatory molecules called cyclin-dependent kinases (CDK ...
NOV 26, 2020
Cardiology
Possible Cardioprotective Effects of the Diabetes Drug Empagliflozin
NOV 26, 2020
Possible Cardioprotective Effects of the Diabetes Drug Empagliflozin
Cardiovascular disease and diabetes are often associated with each other, as many issues caused by diabetes promote hear ...
NOV 18, 2020
Technology
Using Machine Learning to Build Chemical Libraries
NOV 18, 2020
Using Machine Learning to Build Chemical Libraries
Using machine learning in drug discovery is no longer a novel procedure and has been well documented in recent literatur ...
Loading Comments...