JUN 05, 2021 5:00 PM PDT

Robotic Exoskeleton May Improve Response to Exercise-based Rehabilitation in People With Severe MS

WRITTEN BY: Ryan Vingum

Robots are most often found in science fiction. Recently, however, researchers are using robot-like technology to help people with severe disability caused by multiple sclerosis (MS), a condition estimated to affect nearly 3 million people worldwide.

According to a recent study published in Multiple Sclerosis and Related Disorders, researchers at the Kessler Institute have completed a proof-of-concept study examining the efficacy of an exercise program using robotic exoskeleton technology, called robotic-exoskeleton assisted exercise rehabilitation (REAER), which could be used to improve the quality of life of individuals with severe MS. 

Standard rehabilitation treatment for people with MS involves a range of exercise training, including walking. Evidence suggests that these approaches can help manage MS symptoms, particularly for those who experience mobility and cognition issues. 

“Exercise is really powerful behavior that involves many brain regions and networks that can improve over time and result in improved function,” noted Dr. Sandroff, a senior research scientist at the Kessler Foundation.

The study conducted by Kessler Foundation researchers attempts to enhance understanding about the efficacy of rehabilitation efforts for people with severe MS, as current rehabilitative approaches are often ineffective for this patient population or lack evidence proving their effectiveness.

The study, which enrolled 10 participants with severe MS, compared the use of traditional walk-based rehabilitation treatment with the REAER program on symptom management over 4 weeks. Specifically, researchers looked at things like how far participants could walk and a participant’s cognitive processing abilities.

Findings, while preliminary, showed favorable results for the use of REAER. Over the four weeks, participants showed significant improvements in cognitive processing, mobility, and connectivity between areas of the brain, such as the thalamus and ventromedial prefrontal cortex.

"This [research] is particularly exciting because therapy using robotic exoskeletons shows such promise for improving the lives of people with co-occurring mobility and cognitive disability, a cohort that likely has the greatest potential to benefit from this new technology," said Dr. Androwis, the study's lead author.

Source: Eureka Alert

About the Author
  • Science writer and editor, with a focus on simplifying complex information about health, medicine, technology, and clinical drug development for a general audience.
You May Also Like
NOV 25, 2021
Clinical & Molecular DX
Cactus Spines Inspire Diagnostic Tools Without the Prick
NOV 25, 2021
Cactus Spines Inspire Diagnostic Tools Without the Prick
Did you know that there are over 1700 species of cacti—spiny plants that have evolved to survive some of the harsh ...
DEC 03, 2021
Technology
New Laser Destroys Drug-Resistant Bacteria
DEC 03, 2021
New Laser Destroys Drug-Resistant Bacteria
Almost 3 million people a year in the U.S. alone are infected with bacteria deemed resistant to antibiotics, according t ...
DEC 22, 2021
Health & Medicine
How the Internet Affects How Smart We Think We Are
DEC 22, 2021
How the Internet Affects How Smart We Think We Are
New research from the University of Texas at Austin on the interface between humans and Google shows Google can give us ...
DEC 30, 2021
Clinical & Molecular DX
Treating Rheumatoid Arthritis: No More Trial and Error?
DEC 30, 2021
Treating Rheumatoid Arthritis: No More Trial and Error?
  Treating rheumatoid arthritis can be like throwing darts—doctors don’t always hit the bullseye. Trial ...
JAN 11, 2022
Chemistry & Physics
Gravity Effects Matter and Antimatter in the Same Way, Researchers Confirm
JAN 11, 2022
Gravity Effects Matter and Antimatter in the Same Way, Researchers Confirm
There is likely little in the world of physics that is so accurately named yet exotically connotated as matter and antim ...
JAN 13, 2022
Neuroscience
This is your brain on music: Goosebumps or meh?
JAN 13, 2022
This is your brain on music: Goosebumps or meh?
Neuroscientists uncover neural basis of emotional responses to music
Loading Comments...