FEB 15, 2016 6:00 AM PST

Smart ‘sweatband' can tell if you're dehydrated

Scientists have designed a new wearable monitor that keeps track of your health by measuring chemicals in your sweat.

While health monitors have exploded onto the consumer electronics scene over the past decade, researchers say this device, which can be synched in real time to your smart phone, is the first fully integrated electronic system that can provide continuous, noninvasive monitoring of multiple biochemicals in perspiration.
 

The advance opens doors to wearable devices that alert users to health problems such as fatigue, dehydration, and dangerously high body temperatures.

“Human sweat contains physiologically rich information, thus making it an attractive body fluid for noninvasive wearable sensors,” says study principal investigator Ali Javey, professor of electrical engineering and computer sciences at the University of California at Berkeley and principal invesdtigator of the study that is published in the journal Nature.

“However, sweat is complex and it is necessary to measure multiple targets to extract meaningful information about your state of health.

“In this regard, we have developed a fully integrated system that simultaneously and selectively measures multiple sweat analytes, and wirelessly transmits the processed data to a smartphone. Our work presents a technology platform for sweat-based health monitors.”

“Having a wearable sweat sensor is really incredible because the metabolites and electrolytes measured by the Javey device are vitally important for the health and well-being of an individual,” says coauthor George Brooks, Berkeley professor of integrative biology. “When studying the effects of exercise on human physiology, we typically take blood samples. With this noninvasive technology, someday it may be possible to know what’s going on physiologically without needle sticks or attaching little, disposable cups on you.”
 

Headbands and wristbands


The prototype packs five sensors onto a flexible circuit board. The sensors measure the metabolites glucose and lactate, the electrolytes sodium and potassium, and skin temperature.

“The integrated system allows us to use the measured skin temperature to calibrate and adjust the readings of other sensors in real time,” says Wei Gao, a postdoctoral fellow in Javey’s lab. “This is important because the response of glucose and lactate sensors can be greatly influenced by temperature.”

Adjacent to the sensor array is a wireless printed circuit board with off-the-shelf silicon components. The researchers used more than 10 integrated circuit chips responsible for taking the measurements from the sensors, amplifying the signals, adjusting for temperature changes, and wirelessly transmitting the data. The researchers developed an app to sync the data from the sensors to mobile phones, and then fitted the device onto “smart” wristbands and headbands.

To test the device they put dozens of volunteers through various indoor and outdoor exercises. Study subjects cycled on stationary bikes or ran outdoors on tracks and trails from a few minutes to more than an hour.
“We can easily shrink this device by integrating all the circuit functionalities into a single chip,” says postdoctoral fellow Sam Emaminejad. “The number of biochemicals we target can also be ramped up so we can measure a lot of things at once. That makes large-scale clinical studies possible, which will help us better understand athletic performance and physiological responses to exercise.”

A longterm goal would be to use the device for population-level studies for medical applications. It also has potential to measure more than perspiration.

“While Professor Javey’s wearable, noninvasive technology works well on sweating athletes, there are likely to be many other applications of the technology for measuring vital metabolite and electrolyte levels of healthy persons in daily life,” Brooks says. “It can also be adapted to monitor other body fluids for those suffering from illness and injury.”

The Berkeley Sensor and Actuator Center and the National Institutes of Health support this work.

Source: UC Berkeley

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
MAR 24, 2021
Technology
The Road To Faster Computing
MAR 24, 2021
The Road To Faster Computing
Research led by the Cavendish Laboratory at the University of Cambridge has identified a material that could help tackle ...
APR 03, 2021
Technology
Social Media Addiction is Linked To Cyberbullying
APR 03, 2021
Social Media Addiction is Linked To Cyberbullying
Children and teens are spending most of their time on social media platforms like Instagram and TikTok. Now, researchers ...
MAY 13, 2021
Technology
Virtual Platform eMindful to Lead Mindfulness Education Initiative for Mental Health Awareness Month
MAY 13, 2021
Virtual Platform eMindful to Lead Mindfulness Education Initiative for Mental Health Awareness Month
May is Mental Health Awareness Month, and with it comes increased efforts to raise awareness about the prevalence and st ...
JUN 04, 2021
Plants & Animals
What Elephant Trunks Teach Science about Suction
JUN 04, 2021
What Elephant Trunks Teach Science about Suction
How an elephant picks up a tortilla chip could inspire next-generation suction technology.
JUN 17, 2021
Infographics
Cryptocurrencies 101
JUN 17, 2021
Cryptocurrencies 101
The first cyrptocurrency, Bitcoin, was invented by an unknown person or group of people under the name Satoshi Naka ...
JUL 07, 2021
Technology
New Device Inactivates Bacteria That Cause Ear Infections
JUL 07, 2021
New Device Inactivates Bacteria That Cause Ear Infections
Researchers may have developed a device that could offer new therapeutic benefits to ear infection patients. According t ...
Loading Comments...