MAR 19, 2014 7:00 AM PDT

A Unique B Cell Derived Signature of Multiple Sclerosis and its Biologic Implications

Presented at: Neuroscience
Speaker
  • Associate Professor Cain Denius Scholar in Mobility Disorders, Department of Neurology & Neurotherapeutics, Pediatrics, UT Southwestern Medical Center
    BIOGRAPHY

Abstract

Multiple Sclerosis (MS) is an autoimmune disease that leads to widespread pathology within the central nervous system (CNS) and is the most common cause of neurologic disability among young adults within the US. Pathologic descriptions of multiples sclerosis have documented damage to the myelin sheath around axons and to underlying neurons. The mechanism of damage has long been ascribed to auto reactive T cells that infiltrate the CNS and cause tissue injury. Over the last decade, however, a significant amount of data has implicated a deranged B cell biology in the pathogenesis of this disabling condition. Work completed within labs at UT Southwestern have identified a novel pattern of somatic hypermutation among B cells from MS patients. This pattern is currently being studied as a potential new biomarker or diagnostic test for the condition. Continued research has begun to determine the antigenic targets of this deranged B cell biology and will point the field in new research directions. This presentation will present data relative to the identified pattern of somatic hypermutation from MS patients, the biology of the produced antibodies from these unique cells and implications for future research.


Show Resources
You May Also Like
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
JAN 13, 2022 9:00 AM PST
C.E. CREDITS
JAN 13, 2022 9:00 AM PST
Date: January 13, 2022 Time: 09:00am (PST), 12:00pm (EST) Recently, the Infectious Disease Society of America released guidance on how to approach treatment of infections caused by multidrug...
FEB 24, 2022 10:00 AM PST
C.E. CREDITS
FEB 24, 2022 10:00 AM PST
Date: February 24, 2021 Time: 10:00am (PST), 1:00pm (EST) One of the largest global public health crises is the rise of antimicrobial-resistant infections. Globally, over 700,000 people die...
MAR 19, 2014 7:00 AM PDT

A Unique B Cell Derived Signature of Multiple Sclerosis and its Biologic Implications

Presented at: Neuroscience


Show Resources
Loading Comments...
Show Resources