MAY 10, 2017 01:30 PM PDT
Addressing "NGS Dead Zones" with Third-Generation PacBio Sequencing
Presented at the Genetics and Genomics 2017 Virtual Event
SPONSORED BY: Pacific Biosciences of California
CONTINUING EDUCATION (CME/CE/CEU) CREDITS: P.A.C.E. CE | Florida CE
1 1 62

Speakers:
  • Chief Scientific Officer, Pacific Biosciences
    Biography
      Jonas Korlach was appointed Chief Scientific Officer of Pacific Biosciences in July 2012. He was previously a Scientific Fellow, supporting commercial development of the PacBio RS II system and performing research aimed at developing new applications for SMRT technologies. He co-invented the SMRT technology with Stephen Turner, Ph.D., Pacific Biosciences Founder and Chief Technology Officer, when the two were graduate students at Cornell University. Dr. Korlach joined Pacific Biosciences as the company's eighth employee in 2004. Previously, he was a Postdoctoral Researcher at Cornell University.

      Dr. Korlach is the recipient of multiple grants, an inventor on 70 issued U.S. patents and 61 international patents, and an author of over 70 scientific studies on the principles and applications of SMRT technology, including publications in Nature, Science, and PNAS. In 2013, Dr. Korlach was honored by the Obama White House as an Immigrant Innovator "Champion of Change." He received both his Ph.D. and his M.S. degrees in Biochemistry, Molecular and Cell Biology from Cornell, and received M.S. and B.A. degrees in Biological Sciences from Humboldt University in Berlin, Germany.

    Abstract:

    SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.


    Show Resources
    Loading Comments...