MAY 10, 2017 1:30 PM PDT

Addressing "NGS Dead Zones" with Third-Generation PacBio Sequencing

Sponsored by: PacBio
Speaker
  • Chief Scientific Officer, Pacific Biosciences
    Biography
      Jonas Korlach was appointed Chief Scientific Officer of Pacific Biosciences in July 2012. He was previously a Scientific Fellow, supporting commercial development of the PacBio RS II system and performing research aimed at developing new applications for SMRT technologies. He co-invented the SMRT technology with Stephen Turner, Ph.D., Pacific Biosciences Founder and Chief Technology Officer, when the two were graduate students at Cornell University.

      Dr. Korlach joined Pacific Biosciences as the company's eighth employee in 2004. Previously, he was a Postdoctoral Researcher at Cornell University. Dr. Korlach is the recipient of multiple grants, an inventor on 70 issued U.S. patents and 61 international patents, and an author of over 100 scientific studies on the principles and applications of SMRT technology, including publications in Nature, Science, and PNAS. In 2013, Dr. Korlach was honored by the Obama White House as an Immigrant Innovator "Champion of Change." He received both his Ph.D. and his M.S. degrees in Biochemistry, Molecular and Cell Biology from Cornell, and received M.S. and B.A. degrees in Biological Sciences from Humboldt University in Berlin, Germany.

    Abstract

    SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources