NOV 04, 2015 11:00 AM PST

Advances in AMPK and Autophagy signaling

Speaker
  • Professor, Molecular and Cell Biology Laboratory, Deputy Director, Salk Cancer Center, The Salk Institute for Biological Studies
    BIOGRAPHY

Abstract
DATE: November 4th, 2015
TIME: 11:00am Pacific time, 2:00pm Eastern time

AMPK, a highly conserved sensor of cellular energy status, is found in all eukaryotic cells and maintains metabolic homeostasis by reprogramming growth, metabolism, and autophagy in the face of cellular stresses. AMPK is activated by direct binding of AMP and ADP to its regulatory subunits, which enhances its phosphorylation by the upstream kinase LKB1, a tumor suppressor gene frequently inactivated in sporadic human lung and cervical cancer. In addition to this direct connection to cancer, AMPK is activated by a number of diabetes therapeutics, leading to our close examination of the role of LKB1 and AMPK in genetically engineered mouse models of cancer and diabetes.  It is increasingly clear that LKB1 is a unique, energy-state sensitive regulator of growth and metabolic reprogramming that mediates its effects through AMPK. Over the past decade, our laboratory has combined phospho-proteomic, genetic, and bioinformatic approaches to identify highly conserved direct substrates of AMPK that mediate its effects on metabolism and growth control.  These studies have led to the identification of components of the mTOR signaling pathway, the autophagy pathway, and transcriptional regulators of metabolism, all as direct substrates of AMPK.  In addition, a significant effort has gone into characterizing the downstream kinase ULK1, a highly conserved kinase involved in autophagy initiation, and remarkably the only protein kinase in the core autophagy pathway.  We have recently developed small molecule inhibitors of ULK1 and tested their utility in proof-of-principle cell culture studies, blocking autophagy in combination with other targeted cancer therapies.  

Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
Loading Comments...
Show Resources