OCT 03, 2019 3:00 PM PDT

'Any Idiot can do it'. How easy a knockout or knockin mouse could be generated using CRISPR/Cas9 gene editing technology?

Presented at: CRISPR 2019
Speaker

Abstract

Novel precision genetic technologies such as CRISPR/Cas9 genome editing technology offer novel avenues to a better understanding the mechanisms of diseases. Using CRISPR/Cas9 we are able to precisely modify the mouse or the human genome by creating knockout or a specific single nucleotide change to enable the study of the function of the gene of interest. The generation of these models lies on the ability of Cas9 to create a double strand break in the DNA and the repair to occur via the error prone Non-Homologous End Joining (NHEJ) or the precise Homology direct Repair (HDR) mechanisms. A large body of work has been recently dedicated to either improve the technology to generate efficiently knockout or knock-in mouse models (point mutations, tags or floxed alleles). The rapid pace of the technology development has generated a lot of excitement but also some disappointment over the lack of reproducibility of the experiments. This led to a substantial loss of research time and funding. This short presentation will give an overview over the initiatives undertaken to tackle irreproducible research and we will discuss how to address these problems in the field of gene editing technology.

Learning objectives:

1. Generation of knock-in mouse model using CRISPR/Cas9
2. How to design robust and reproducible experiments


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
MAR 30, 2022 6:00 AM PDT
MAR 30, 2022 6:00 AM PDT
Targeted NGS has been instrumental in helping the healthcare community deliver on the promise of precision medicine. The Ion Torrent Genexus Integrated Sequencer has enabled targeted genomic...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
MAR 02, 2022 9:00 AM PST
C.E. CREDITS
MAR 02, 2022 9:00 AM PST
Date: March 02, 2022 Time: 9:00am (PST), 12:00pm (EST) Single cell RNA-seq is known to only capture a small fraction of the transcriptome of each cell. Often, this is due to inherent limitat...
OCT 03, 2019 3:00 PM PDT

'Any Idiot can do it'. How easy a knockout or knockin mouse could be generated using CRISPR/Cas9 gene editing technology?

Presented at: CRISPR 2019


Show Resources
Loading Comments...
Show Resources