SEP 24, 2014 08:00 AM PDT

Approaches to antibacterial discovery: New strategies and technologies to address a challenging field

Speakers
  • Executive Director in the Infectious Diseases Area, Novartis Institutes for BioMedical Research
    Biography
      Dr. Jennifer Leeds is an Executive Director in the Infectious Diseases Area at the Novartis Institutes for BioMedical Research. As the Head of antibacterial discovery, Jennifer is responsible for leading the strategy and execution of the new antibacterial portfolio within NIBR. The mission of the group is to identify safe and effective new chemical entities against bacterial targets to address unmet medical needs in patients with severe and drug resistant bacterial infections. The areas of focus within her team include bacterial physiology and genetics, biochemistry and lead discovery, clinical microbiology, and new technologies for understanding antibacterial compound structure/activity relationships. Jennifer began her career at NIBR in 2003. As a Project Team Leader she led cross-functional international teams and successfully advanced a novel antibacterial compound, LFF571, from inception to clinical development. This molecule, of which Jennifer is a co-inventor, achieved a positive Proof of Concept in patients with mild to moderate C. difficile infections. Jennifer received her B.S. in Microbiology from Cornell University in 1991 and Ph.D. in Medical Microbiology and Immunology from the University of Wisconsin-Madison in 1996. She completed her postdoctoral fellowship in the laboratory of Jon Beckwith at Harvard Medical School in 2001.

    Abstract:
    Antibiotics are among the most important advances in the history of modern medicine. They turned often acutely fatal infections into treatable indications with radical cures. Antibiotics continue to enable nearly all of the medical and surgical advances that we turn to as treatments for every human and animal disease. Yet our ability to develop safe and effective antibiotics is out-competed by natural selection as well as increasingly difficult challenges in identifying new, clinically-validatable targets and high value chemical starting points for new therapeutics. Some new strategies and technologies are allowing us to gather a deeper understanding of the biology of microorganisms both pathogens and resident flora as well as means to test chemical hypotheses to guide antibacterial SAR. The time is right and the tools are available or within reach for scientists within all types of organizations to make an enormous collective impact on this challenging field!

    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 20, 2018 10:00 AM EDT
    C.E. CREDITS
    JUN 20, 2018 10:00 AM EDT
    DATE: June 20, 2018TIME: 07:00AM PDT, 10:00AM EDTIntroducing GE’s New Lyo-StableTM service. Sepsis is one of the top challenges facing hospitals in terms of clinical outcomes...
    AUG 16, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 16, 2018 08:00 AM PDT
    DATE: August, 16, 2018TIME: 08:00AM PDTThis webinar will review recent advancements in the application of next-generation sequencing of T cell receptor beta (TCRB) chain repertoires towards...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    Loading Comments...