SEP 24, 2014 8:00 AM PDT

Approaches to antibacterial discovery: New strategies and technologies to address a challenging field

Speaker
  • Executive Director in the Infectious Diseases Area, Novartis Institutes for BioMedical Research
    Biography
      Dr. Jennifer Leeds is an Executive Director in the Infectious Diseases Area at the Novartis Institutes for BioMedical Research. As the Head of antibacterial discovery, Jennifer is responsible for leading the strategy and execution of the new antibacterial portfolio within NIBR. The mission of the group is to identify safe and effective new chemical entities against bacterial targets to address unmet medical needs in patients with severe and drug resistant bacterial infections. The areas of focus within her team include bacterial physiology and genetics, biochemistry and lead discovery, clinical microbiology, and new technologies for understanding antibacterial compound structure/activity relationships. Jennifer began her career at NIBR in 2003. As a Project Team Leader she led cross-functional international teams and successfully advanced a novel antibacterial compound, LFF571, from inception to clinical development. This molecule, of which Jennifer is a co-inventor, achieved a positive Proof of Concept in patients with mild to moderate C. difficile infections. Jennifer received her B.S. in Microbiology from Cornell University in 1991 and Ph.D. in Medical Microbiology and Immunology from the University of Wisconsin-Madison in 1996. She completed her postdoctoral fellowship in the laboratory of Jon Beckwith at Harvard Medical School in 2001.

    Abstract

    Antibiotics are among the most important advances in the history of modern medicine. They turned often acutely fatal infections into treatable indications with radical cures. Antibiotics continue to enable nearly all of the medical and surgical advances that we turn to as treatments for every human and animal disease. Yet our ability to develop safe and effective antibiotics is out-competed by natural selection as well as increasingly difficult challenges in identifying new, clinically-validatable targets and high value chemical starting points for new therapeutics. Some new strategies and technologies are allowing us to gather a deeper understanding of the biology of microorganisms both pathogens and resident flora as well as means to test chemical hypotheses to guide antibacterial SAR. The time is right and the tools are available or within reach for scientists within all types of organizations to make an enormous collective impact on this challenging field!


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    C.E. CREDITS
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    Loading Comments...
    Show Resources
    Attendees
    • See more