MAY 10, 2017 11:00 AM PDT

An ongoing evaluation of our transient expression systems; Can we predict the appropriate expression system for any drug modality?

Speakers
  • Scientist, Protein Technologies, Amgen, Inc.
    Biography
      Rich Altman has 29 years of experience working in the pharmaceutical industry. In 2016, he joined the Protein Technologies Mammalian Expression group at Amgen San Francisco, supporting biologics drug development. Prior to Amgen, he worked for several pharmaceutical companies on the cloning, expression, purification and characterization of recombinant proteins. This work supported both small-molecule high-throughput screening and protein therapeutic efforts. He received his MS degree from the University of Pittsburgh School of Medicine in the Department of Molecular Biology and Biochemistry.

    Abstract:

    CHO cells are the predominant host for biotherapeutic protein expression with approximately 70% of licensed biologics manufactured in Chinese Hamster Ovary (CHO) cells.  The ability to express therapeutic candidates in CHO cells early in the drug development process is advantageous as it minimizes changes in protein quality and function when transitioning to production scale.  To address the lack of a robust and reproducible in-house transient CHO expression system, we incorporated the ExpiCHO™ transient expression system into our transient expression toolbox, joining the well-established HEK293-6E and Expi293™ systems.  With an ever-expanding array of protein formats, the next challenge is being able to strategically match a construct with an expression system.  We have utilized a diverse set of candidate proteins in an ongoing evaluation comparing material transiently produced in parallel in the HEK293-6E, ExpiCHO™ and Expi293™ systems for expression level and product quality.  We report these results and discuss their implications in how we prioritize our selection of expression systems.  Successful prioritization of an expression system for a drug modality will reduce parallel efforts and increase our throughput efficiency by reducing expression timelines


    Show Resources
    You May Also Like
    OCT 02, 2019 11:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    OCT 02, 2019 11:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    MAR 20, 2019 09:00 AM PDT
    C.E. CREDITS
    MAR 20, 2019 09:00 AM PDT
    DATE:  March 20, 2019TIME:  9:00am PDT...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    Loading Comments...
    Show Resources