OCT 11, 2018 12:00 PM PDT

Aurora Kinase A Drives The Evolution of Resistance to Third Generation EGFR Inhibitors in Lung Cancer

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Post Doctoral Research Scholar at University of California, San Francisco
    Biography
      Khyati Shah received her Ph.D. in Molecular Pharmacology from the University of the Pacific, Stockton, California. Her graduate research was completed in the lab of Jesika Faridi, Ph.D. Her work focused on the investigation of the mechanism of Akt induced tamoxifen resistance in breast cancer.

      Currently, Khyati is the research fellow in Bandyopadhyay Lab since 2015. Her project involves investigation of the mechanism of resistance to targeted and immuno-therapy using systems biology approach. She has three-first author publications in the reputed peer-reviewed journals and 7 oral and 15 poster talks on the use of systemic genomics and proteomic approach to design rational combination therapy and to increase the durability of therapeutic response.

    Abstract

    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of pre-existing subclones, remains unclear. In EGFR-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires AURKA activity. Non-genetic resistance through the activation of AURKA by its co-activator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in pre-clinical models. Treatment induced activation of AURKA was associated with resistance to EGFR inhibitors in-vitro, in-vivo and in individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA driven residual disease and acquired resistance.
     

    Learning Objectives:

    1. Describe pathways of EGFR-TKI resistance mechanisms.
    2. Approaches to identify novel targets in EGFR-TKI resistance patients.


    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources
    Attendees
    • See more