SEP 27, 2018 01:30 PM PDT

Cilia Abnormalities and Developmental Defects in Lowe Syndrome

Presented At Cell Biology 2018
C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Associate Professor and Assistant Head, Department of Biological Sciences, Purdue University
    Biography
      Dr. Aguilar obtained his PhD degree in Immunochemistry from the School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina. Dr. Aguilar pursued his post-doctoral training at the National institutes of Health in Bethesda, MD in the lab of the well-known cell biologist Dr. Juan Bonifacino. In 2005, after a period as Associate Research Scientist at The Johns Hopkins University (in Dr. Beverly Wendland lab), Dr. Aguilar joined the Faculty of the Department of Biological Sciences at Purdue University. There, his group studies the mechanisms linking endocytosis and signaling in health and disease. In order to pursue its research goals, the Aguilar lab routinely use biophysical, biochemical and genetic approaches.

    Abstract:

    Lowe Syndrome (LS) is a devastating genetic disease characterized by abnormalities in the eyes, brain and kidneys that unfortunately leads to the premature death of affected children due to renal failure. Despite being described more than 60 years ago, this condition lacks a clear delineation of its mechanism and no specific cure is available. One contributing cause to this slow progress has been the absence of proper disease models for this condition and the inaccessibility of patient cells from the major affected organs. 

    However, using patient skin fibroblasts we recently reported the first successful preparation of Lowe syndrome induced Pluripotent Stem Cells (iPSCs) and their reprogramming as renal cells1. This work not only represents a technological advance for the LS research field, but also provided insight as to how the patient’s kidney complications develop.

    Specifically, monitoring the process of in vitro kidney cell differentiation provided clues as to how renal deficiency arises in patients. Specifically, we found that in LS kidney cells the transcription factor Six2 (crucial for renal development) was abnormally retained outside the cell nucleus impairing its gene regulatory function. This deficient Six2 activity caused decreased production of the so-called proximal tubular cells which are involved in critical functions of the kidney, such as avoiding the excretion of important serum proteins. 

    Misregulation of a differentiation pathway is a novel LS phenotype that is predicted to have great impact in patients’ renal function. Further, this work suggests that developing strategies directed to enhance proper Six2 function or to prevent its retention outside the nucleus constitute viable options to maintain renal function in LS patients.

    Learning Objectives: 

    1. Understand how Lowe Syndrome can lead to premature death of affected children.
    2. Understand how patient skin fibroblasts are helping those affected with Lowe Syndrome.


    Show Resources
    You May Also Like
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    Loading Comments...
    Show Resources