Clinical Scale production extracellular vesicles from various cell types in a cGMP compatible 3-D Capillary Bioreactor: from culture dish to 3-D capillary bioreactor

Presented at: Cell Biology 2020
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • President and CEO, FiberCell Systems, Inc.
    Biography

      John J.S. Cadwell received his degree in pharmacology from the University of Miami in 1981 studying excitation/contraction coupling mechanisms in skeletal muscle. He spent additional time at the University of Nottingham and the National Institute of Medical Research at Mill Hill, U.K.. In 2000 he founded FiberCell Systems Inc., a company specializing in the develop and supply of laboratory scale 3-D capillary hollow fiber bioreactors. He is also founder of FiberCell Laboratories, the research and development arm for FiberCell Systems. He has over 10 publications in the field and three patents relating to hollow fiber systems and has presented talks on various related topics at meetings around the world.


    Abstract

    Extracellular vesicles (EV) from many cell types have demonstrated therapeutic potential against many different diseases. Inhibiting progress in this area is the capability to produce EVs in sufficient quantity to deploy them in in vivo research applications and ultimately the clinic.  Current methods can utilize large numbers of flasks and serum starvation in a batch mode process, or large volume conventional bioreactor systems. It is clear that culture conditions affect the concentration, composition and therapeutic activity of secreted extracellular vesicles. 3-D capillary bioreactors represent the most in vivo like way to culture cells. They can support the culture of large numbers of cells at high densities, 1-2X10e8 cells/ml, 2X10e10 total cells.  Cells are bound to a porous support with a 20kDa molecular weight cut off (MWCO) so cell passaging is not required and EVs cannot cross the fiber in either direction. Secreted EVs are concentrated, free from contaminating serum EVs, show reduced membrane fragment contamination and in some cases have demonstrated enhanced bioactivity. The functional principles of 3-D capillary bioreactors will be shown, and examples of the current and potential future of clinical EV scale-up will be discussed.

    Learning Objectives:

    1. What are the three fundamental differences between a 3-D hollow fiber bioreactor and a T flask?

    2. What is the definition of a Dalton?

    3. In what ways is a 3-d hollow fiber bioreactor more in vivo like?


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    Loading Comments...
    Show Resources