MAR 20, 2014 06:00 AM PDT

Connectomics - Defining Neural Circuits to Understand Brain Function

Presented At Neuroscience
Speakers
  • Siegfried Ullmann Professor of Genetics, Professor of Neuroscience, Albert Einstein College of Medicine
    Biography
      Dr. Emmons is the Siegfried Ullmann Professor of Genetics and Professor of Neuroscience at the Albert Einstein College of Medicine. Dr. Emmons received his PhD from Stanford University. He carried out postdoctoral work at the Carnegie Institution of Washington, Department of Embryology, Baltimore, and at the University of Colorado, Boulder. Dr. Emmons has been studying the nematode worm Caenorhabditis elegans for over 30 years. Initially he analyzed genome structure. Later he turned his attention to developmental studies, focusing on development of the C. elegans male as a model for understanding the genetic specification and evolution of morphology. This work led to the identification of a number of regulatory genes and contributed to the understanding of genetic specification of cell fate, including patterning of neurotransmitters in the nervous system. Current focus is on male behavior and the structure, development, and genetic specification of the nervous system. The laboratory has recently determined the wiring diagram of the nervous system of the adult male. This is one of the first results in the new field of connectomics. A connectome is a complete map of a nervous system, including all the synaptic connections. Currently the laboratory is interested in studying the development of connectivity during growth and in identifying the genes that specify individual connections.

    Abstract:

    Connectomics is a new field of research that aims to map the synapses of the nervous system in order to construct a wiring diagram of all the neural circuits. It is necessary to use the electron microscope to visualize synapses, so at present the connectomes of most animal species cannot be determined. Currently, the only known connectome is that of the tiny nematode worm Caenorhabditis elegans. C. elegans is an excellent model for understanding how the nervous system controls behavior. The wiring diagram of the C. elegans nervous system represents a neural network. Many of the features of this network help us understand how animal nervous systems function.

    Learning objectives:
    1. Connectomics is a new field of study that aims to identify the circuits of the nervous system.
    2. The connectome of the nematode worm C. elegans, which is the only currently known complete wiring diagram of an animal nervous system, is a neural network with features that help explain its function.


    Show Resources
    You May Also Like
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    MAY 02, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 02, 2018 08:00 AM PDT
    Immunohistochemistry protocols, which utilize antibodies to visualize proteins in tissue sections, have many steps that need optimized to prevent non-specific background effects, artifacts, o...
    Loading Comments...
    Show Resources