MAY 09, 2017 8:00 AM PDT

WEBINAR: Deafness in the Genomic Era: Discoveries, Challenges and Opportunities

Sponsored by: Agilent
Speaker
  • Research Scientist/Team Leader, University of Iowa
    Biography
      Hela is a Research Scientist at the Molecular Otolaryngology and Renal Research Laboratories (MORL) at the University of Iowa, USA. She received her Bachelor of Science and her Master of Science degrees (Biological engineering) at the University of Sfax in Tunisia and her Ph.D. degree in Human Molecular Genetics at the University of Sfax conjointly with the University of Iowa. After completing a postdoctoral fellowship at the MORL at the University of Iowa, Hela was appointed as Assistant Professor at the Pasteur Institute of Tunis in Tunisia. After working there for two years on characterizing the genetic etiology of orphan diseases in the Tunisian population, she returned back to the USA where she is currently leading the hearing research team at the MORL. Her current research program is focused on the discovery of novel genes, genetic modifiers and non-coding regulatory elements involved in hereditary deafness as well as the investigation of genetic contributions to age- and noise-induced hearing loss. She is in charge of developing next-generation sequencing platforms and gene panels along with creating solutions to improve interpretation and clinical correlation of genomic variants. She aims to translate novel knowledge acquired through research into clinical diagnostics.

    Abstract

    DATE: May 9, 2017
    TIME: 8:00am PT, 11:00am ET

    Hearing loss is the most common sensory defect in humans. It affects 360 million people worldwide and by 2020, that number is predicted to reach 1 billion. The genetic and allelic heterogeneity associated with hereditary deafness are well established. Over 90 genes and 2000 mutations are causally linked to non-syndromic hearing loss (NSHL), which exhibits a wide spectrum of phenotypic diversity in onset, severity, progression and audioprofiles. Developing a comprehensive approach to tackle this extraordinary heterogeneity has become the cornerstone for genetic analysis. Capitalizing on technological advances, we have developed OtoSCOPE®, a next-generation sequencing platform that simultaneously screens 152 genes known to cause NSHL as well as common syndromic forms.

    We sought to make this analysis widely available as an inexpensive and highly informative genetic analysis that would assist in the evaluation of persons with hearing impairment. To achieve this goal, we developed and optimized a customized pipeline to identify, annotate, categorize and prioritize sequence variants including SNVs, indels and importantly, copy number variations (CNVs). We also implemented a multidisciplinary approach that integrates a set of tools to determine the clinical significance of genetic variations. For example, we have created the Deafness Variation Database (DVD), an open-access database of all variants in all genes implicated in NSHL, and AudioGene, a machine-learning algorithm that analyzes audiometric data to predict likely genetic causes of deafness. AudioGene can also identify audiometric outliers at each deafness locus.

    During this webinar, we will present the challenges we have faced and the solutions we have created to overcome them. We will discuss the knowledge we have acquired that has advanced our understanding of the molecular genetics of deafness. We will also showcase specific case studies to highlight the genetic and phenotypic complexities of hereditary deafness.

    Learning objectives

    • Targeted gene panels for deafness offer an efficient, cost-effective, customizable, high-throughput and high-depth sequencing approach to detect rare variants and CNVs, and to shed light on the hidden complexities of hereditary deafness
    • The massive depth of coverage associated with targeted gene panels facilitates the detection of CNVs, which make a significant contribution to NSHL. Their detection must be integrated in all NGS pipelines for deafness.   
    • Most identified deafness variants are novel or rare, and of unknown significance, making their interpretation challenging. The integration of audiometric and genetic data facilitates meeting this challenge.
       

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    JUN 23, 2020 10:00 AM PDT
    C.E. CREDITS
    JUN 23, 2020 10:00 AM PDT
    DATE: June 23, 2020 TIME: 10:00am PT Human mesenchymal stromal or stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach for many diseases, s...
    Loading Comments...
    Show Resources
    Attendees
    • See more