SEP 28, 2017 10:00 AM PDT

WEBINAR: Development of anti-cancer gene therapies through understanding of cytokine-induced programmed cell death

Speaker
  • PhD Candidate; Lehman College, City University of New York; The Graduate Center, City University of New York
    BIOGRAPHY

Abstract

DATE: September 28, 2017
TIME: 10:00am PDT, 1:00pm EDT

 

The use of gene therapy is well studied due to its potential to treat cancer, the second leading cause of death worldwide. The goal of gene therapy is to introduce functional genetic material into human cells to be transcribed and translated in order to regulate, repair or suppress a molecular mechanism that contributes to a disease state. Compared to traditional cancer therapies such as surgery, chemotherapy or radiation therapy, gene therapy is a more personalized and targeted approach because it is based on understanding the genetic profile of a patient’s tumor. Genes being developed for cancer therapy code for a variety of proteins including tumor suppressors, specific antigens, transcription factors, cell cycle regulators, receptors and cytokines. The cytokine Interleukin-24 (IL-24), is of special interest for gene therapy because of its selective killing effect on numerous cancer cell types while having no effect on corresponding normal cells. Due to this property, IL-24 is being investigated in Phase II clinical trials as a gene therapeutic to treat cancer patients. To understand how IL-24 exerts its specific killing effect, our lab studies the signaling pathways that IL-24 activates to induce programmed cell death also known as apoptosis. We use various cancer cell lines to understand which proteins IL-24 modulates to produce its killing effect. Currently, we are exploring how IL-24 blocks protein synthesis in cancer cells to promote cell death. Our aim is to further develop IL-24 as an anti-cancer therapeutic for gene therapy and to reveal targets for combination therapies that will work synergistically with IL-24 to produce a cancer specific killing effect.

Learning Objectives:

  • Understand how cell lines are used to decipher molecular signaling pathways for the development of anti-cancer therapeutics
  • Learn how IL-24 treatment kills cancer cells

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
SEP 28, 2017 10:00 AM PDT

WEBINAR: Development of anti-cancer gene therapies through understanding of cytokine-induced programmed cell death



Show Resources
Loading Comments...
Show Resources