MENU
MAY 01, 2017 8:00 AM PDT

Improved differentiation of stem cell-derived neurons and downstream applications through the reduction of progenitor proliferation with CultureOne™ Supplement

Speaker
  • Director and Group Leader, Thermo Fisher Scientific
    Biography
      Dr. Kuninger leads research, development and commercialization of media systems for pluripotent stem cell culture & differentiation, neurobiology, and (non-hepatic) primary cell biology at Thermo Fisher Scientific in the Cell Biology business based in Frederick MD. His teams support numerous portfolios and have launched over 25 new products spanning stem cell culture & cryopreservation, differentiation (endo-, ecto- and meso-dermal lineages) and neurobiology over the past 3 years. David is a seasoned scientist and manager, experienced in media formulation & optimization, assay design and implementation, and troubleshooting. Expertise in GLP/GMP compliance, tech transfer and scale up, as well as verification and validation processes. Prior to starting at Thermo Fisher Scientific (legacy Invitrogen) in 2007 as Staff Scientist, he joined Oregon Health Sciences University as a Postdoctoral Fellow investigating the actions of insulin-like growth factors in the lab of Dr. Peter Rotwein, subsequently joining the faculty in the Department of Biochemistry at OHSU as a Research Instructor. He completed is PhD in Biochemistry and Genetics University of Texas Medical Branch in the laboratory of Dr. John Papaconstatinou and has a B.S. in Chemistry from the University of Oregon.

    Abstract

    Neurons derived from human pluripotent stem cells (hPSCs) and primary rodent neurons both are excellent resources for disease modeling and drug screening.  Human PSCs derived neural stem cells (NSCs) can be expanded in culture and further differentiated into mature neurons for various applications, however, these often contain mixed population of both differentiated neurons and undifferentiated NSCs. Due to the continuing proliferation of undifferentiated NSCs, very high cell densities and cell aggregation are usually observed during the differentiation of hPSC-derived NSCs which increase over time, posing challenges for long-term maintenance and downstream analysis.  Primary rodent neuronal cultures, while highly physiologically relevant, are often challenged by glial cell overgrowth, which may exacerbate assay and analysis issues.  Here we demonstrate the use of CultureOne(tm) - a new supplement which can reduce the proliferation of undifferentiated NSCs without negatively impacting the rate or extent of differentiation for hPSC-derived NSCs.  Further, we will demonstrate the ability to "tune" the glial cell population in primary rodent neuronal cultures.  The overall effect in both instances increases the relevant population of neurons in culture.  Experimental data presented in this webinar will  illustrate the functionality, morphology, and maturity of these neuronal cultures.


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    MAY 01, 2017 8:00 AM PDT

    Improved differentiation of stem cell-derived neurons and downstream applications through the reduction of progenitor proliferation with CultureOne™ Supplement


    Specialty

    Cancer Research

    Cancer Diagnostics

    Life Science

    Molecular Diagnostics

    T-Cells

    Genomics

    Bioinformatics

    Molecular Genetics

    Gene

    Cancer

    University

    Laboratory Testing

    Blood

    Clinical Oncology

    Geography

    North America75%

    Europe25%

    Registration Source

    Website Visitors100%

    Job Title

    Student43%

    Executive14%

    Medical Laboratory Technician14%

    Scientist14%

    Lab Management14%

    Organization

    Biotech Company25%

    Association13%

    Academic Institution13%

    Other25%


    Show Resources
    Loading Comments...
    Show Resources