OCT 30, 2014 1:30 PM PDT

Dissecting cancer signaling pathways with chemical scalpels

Speaker
  • Head, Synthetic Biologics Core, Cancer and Inflammation Program, Center for Cancer Research National Cancer Institute
    BIOGRAPHY

Abstract

Advances in genomic research have led to identification of the majority of the drivers of tumor progression. However, our understanding of the molecular mechanisms propelling tumor growth is progressing much slower. Incomplete knowledge of oncoproteins regulatory mechanisms results in unexpected detrimental effects of targeted therapy. Obliteration of the protein expression is the most commonly used approach in characterization of protein function. However, the majority of proteins have multiple functions and many interacting partners. Genetic eradication of proteins does not inform on the function of particular protein-protein interactions and cannot detect essential self-inhibitory mechanisms. Chemical biology tools are much more informative in that sense. However, generation of selective chemical probes is a labor-intense process. In addition, the majority of protein-protein interactions cannot be inhibited by small molecules and thus are considered undruggable. Peptides are well suited for targeting protein-protein interactions, but their use is hampered by conformational flexibility, poor membrane penetration, low stability in circulation and rapid clearance from the body. We and others we have succeeded recently in developing metabolically stable cell permeable peptide analogs with rigid and predictable structures amenable to rational design. The approach developed in our group is based on structural stabilization of protein fragments by membrane anchoring. General applicability of this straightforward method was confirmed by generation of selective and highly potent dominant negative inhibitors of RAS oncogenes, ?-catenin, STAT1, STAT3 and STAT5 N-domains, and other non-druggable targets. Much simplified generation of selective chemical biology tools allows for effective interrogation of protein-protein interactions leading to uncovering of mechanistic details of molecular signaling that could not be obtained with the help of genetic approaches.

Learning objectives:

  • Learn simple ways of developing chemical biology tools (no sophisticated chemistry is required)
  • Learn how to uncover the roles of a certain protein-protein interaction.

Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
FEB 24, 2021 10:00 AM PST
C.E. CREDITS
FEB 24, 2021 10:00 AM PST
DATE: February 24, 2021 TIME: 10am PST Automated lab instruments such as liquid handlers and cell sorters are increasingly common in all types of laboratories, driving fast results for labor...
JAN 21, 2021 8:00 AM PST
JAN 21, 2021 8:00 AM PST
Date: January 21, 2021 Time: 8:00am (PST), 11:00am (EST) Today, critical reagent characterization is a key component in the overall workflow to establish robust ligand binding assays (e.g.,...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
JUL 15, 2021 9:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
JUL 15, 2021 9:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
OCT 30, 2014 1:30 PM PDT

Dissecting cancer signaling pathways with chemical scalpels


Specialty

Research And Development

Earth Science

University

Research

Health

Geography

Asia100%

Registration Source

Website Visitors100%

Job Title

Medical Laboratory Technician100%

Organization

Manufacturer - Other100%


Show Resources
Loading Comments...
Show Resources
Attendees
  • See more