JUN 03, 2020 2:00 PM PDT

Dynamic Live Cell Imaging of Adherent and Immune Cells using CellASIC® ONIX2 Microfluidic Platform

Sponsored by: MilliporeSigma
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

While providing indispensable insight into immune processes, the live cell imaging of immune cells poses unique challenges due to their non-adherent nature. Suspension cells such as immune cells can easily move away from the FOV (field of view) during imaging by perturbation such as reagent introduction, often necessitating the use of surface coating to artificially immobilize cells. In addition, unlike adherent cells, interacting suspension cells form aggregates, making it very difficult to track and analyze individual cells during imaging. Here we describe the novel, microfluidic-based dynamic live cell imaging platform CellASIC® ONIX2, where microenvironmental parameters such as the perfusion of media/reagent, temperature, and gas compositions can be precisely controlled on-demand via software during the entire imaging experiment. Unlike most live imaging platforms merely aiming to maintain temperature and gas at certain levels, CellASIC® ONIX2 platform’s ability to control fluidics and perfusion offers true on-demand control of cellular microenvironment during live cell imaging, and its standard plate form factor can instantly upgrade any existing inverted microscope into a fully capable live cell imaging platform. Overview of applications covering hypoxia, apoptosis, migration, and suspension immune cell imaging will be presented. Specific emphasis will be given to microfluidic designs targeted for use with different cell types as well as fluorescent probes for live cell imaging. Any scientists planning to start live cell imaging experiments, as well as experienced imaging scientists wanting to broaden their applications will benefit from this session. 

Learning Objectives:

1. Understand the advantages and limitations of current live cell imaging platforms

2. Learn about the emerging field of microfluidic based dynamic imaging

3. Review current state of the art regarding microfluidics based dynamic imaging


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
DEC 01, 2021 7:00 AM PST
C.E. CREDITS
DEC 01, 2021 7:00 AM PST
Date: December 01, 2021 Time: 7:00am (PST), 10:00am (EST) In the era of immuno-oncology, there is a growing need for the identification of new biomarkers predictive for sensitivity to anti-P...
Loading Comments...
Show Resources