MAR 15, 2018 10:30 AM PDT

An Emerging Role of DNA Damage-Repair in Huntington's Disease

Presented at: Neuroscience 2018
Speaker
  • Professor, Keck Graduate Institute
    Biography
      Professor Ray earned his PhD in microbial genetics from Monash University in Melbourne, Australia. His PhD research led to the identification of a gene for efficient plasmid maintenance in Escherichia coli and a method for generating a multi-copy infectious plasmid that is packageable inside a virus coat--an early example of synthetic biology. He subsequently conducted research at the Institute of Molecular Biology, University of Oregon, and the Department of Biology, Massachusetts Institute of Technology, during which periods he developed methods for precise in vivo chromosome engineering in yeast and in an experimental plant. He was an Assistant Professor from 1991 to 1995 and Associate Professor from 1996 to 2001 of Biology at the University of Rochester, New York, and an adjunct associate professor at the University of California, San Diego from 2001 to 2004. He was a visiting professor at the University of Rochester from 2001 to 2004, at Institute for Systems Biology in Seattle in 2009, University of Hyderabad in 2009, and is currently a visiting faculty in California Institute of Technology, Pasadena. Research in his laboratory led to the discovery of the first known maternal effect embryo pattern formation gene in plants. His student, Teresa Golden, cloned a plant gene (DCL1) that later became known as the first member of the Dicer group of genes required for microRNA biogenesis. His PhD student Stephen Schauer identified the remaining known plant Dicer genes (DCL2-4). From 1999 to 2001, while on extended leave of absence from the University of Rochester, Dr. Ray directed research programs on regulation of gene expression and gene targeting at a plant biotechnology start-up company in San Diego.
      His current research work involve systems biology of Huntington's disease, chromosome instability, non-coding RNAs in cancers, and cancer drug resistance mechanisms.

      In the late 1990s, Dr. Ray, along with a computer scientist colleague Dr. Mitsunori Ogihara, published a series of papers on experimental and theoretical investigations on designing massively parallel computing devices using solution phase DNA chemistry. Accounts of this research were featured in several news media including the New York Times and the International Herald Tribune and he and Dr. Ogihara were featured in the book One Digital Day: How the Microchip is Changing Our World.

      He currently teaches courses on molecular systems biology that includes molecular mechanisms of human diseases and pharmacogenomics. He was KGI's faculty chair (2010-2016) and director of KGI's PhD programs (2006-2016).

    Abstract

    Machine learning approaches to pattern discovery in protein-protein interaction networks of Huntington’s disease brain and model organisms are revealing novel connections of the disease state to the processes of DNA and chromosome damage-repair pathways. Some of these computational inferences have been tested and validated in Huntington’s disease experimental models, suggesting provocative therapeutic target concepts.


    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    MAR 15, 2018 10:30 AM PDT

    An Emerging Role of DNA Damage-Repair in Huntington's Disease

    Presented at: Neuroscience 2018

    Specialty

    Assay Development

    Molecular Biology

    Lims

    Health

    Lab Automation

    Research And Development

    Genomics

    Spectroscopy

    Gene Expression

    Precision Medicine

    Bioinformatics

    Molecular Diagnostics

    Mass Spectrometry

    Earth Science

    Laboratory Testing

    Geography

    North America50%

    Asia50%

    Registration Source

    Website Visitors100%

    Job Title

    Medical Laboratory Technician100%

    Organization

    Clinical Laboratory50%

    Manufacturer - Other50%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more